首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
铜冶炼副产品工业硫酸镍中铜质量分数为1%~5%,如采用化工行业标准方法HG/T2824—2009《工业硫酸镍》中规定的丁二酮肟重量法测定镍,则铜对镍的测定存在干扰。试验对测定含铜工业硫酸镍中镍的分析方法进行了改进,增加了使用硫代硫酸钠掩蔽铜的步骤,再采用丁二酮肟重量法测定镍,从而建立了硫代硫酸钠掩蔽铜-丁二酮肟重量法测定含铜工业硫酸镍中镍的方法。方法确定了硫代硫酸钠掩蔽铜时溶液pH值为5~6,丁二酮肟沉淀时pH值为8.5。按照实验方法测定两个工业硫酸镍样品中镍,测定结果的相对标准偏差(RSD,n=10)为0.63%和0.28%,测定值和标准方法YS/T252.1—2007基本一致。  相似文献   

2.
荚江霞  陆军  陆尹 《冶金分析》2016,36(5):58-63
使用王水并利用微波消解的方式处理样品,微波消解采用分步升温的方法,第1步升温5 min到120 ℃,维持6 min;第2步再升温5 min到180 ℃,并保持6 min。选择Si 251.612 nm、Mn 293.930 nm、P 213.618 nm、Cr 206.149 nm、Cu 324.754 nm、Co 238.892 nm、Ni 221.647 nm为分析线并设置合适的背景扣除位置,采用基体匹配法绘制校准曲线可消除基体效应的影响,利用电感耦合等离子体原子发射光谱法(ICP-AES)同时测定硅、锰、磷、铬、铜、钴、镍,建立了镍铁合金中硅、锰、磷、铬、铜、钴、镍的测定方法。各待测元素校准曲线的线性相关系数均大于0.999 5;镍铁中各元素的检出限为0.000 9%~0.003%(质量分数)。方法应用于镍铁合金标准样品JSS 760-3中硅、锰、磷、铬、铜、钴、镍的测定,结果与认定值相符,结果的相对标准偏差(RSD,n=10)为0.36%~5.2%。  相似文献   

3.
张祥  陆晓明  张毅  何伟 《冶金分析》2019,39(10):55-60
采用熔融制样-X射线荧光光谱法(XRF)测定锰铁合金中主次组分,需重点解决样品前处理中锰铁合金浸蚀铂-金坩埚的难题。实验以四硼酸锂为熔剂、碳酸锂为氧化剂,采用分步升温氧化中低碳锰铁合金,成功制备了中低碳锰铁合金玻璃片,建立了X射线荧光光谱法测定中低碳锰铁合金中锰、硅、磷、铁的方法。试验确定了最佳制样条件:以8.0000g四硼酸锂熔融挂壁作为坩埚保护层,称取0.4000g中低碳锰铁合金、0.8000g碳酸锂,混匀;将坩埚移入熔融炉,在650℃下保持20min,700℃下保持20min,720℃保持20min,升温至750℃保持40min,升温至820℃保持40min,升温至1100℃;取出冷却,加入约0.6g碘化铵,再移入炉内摇摆熔融30min,制得均一的玻璃片。实验方法用于测定1个中低碳锰铁合金实际样品中锰、硅、磷、铁,结果的相对标准偏差(RSD,n=11)为0.24%~1.0%;按照实验方法测定2个标准样品和3个中低碳锰铁合金实际样品,测定值与标准值或者化学湿法值相一致。实验方法有效解决了中低碳锰铁合金熔融制样过程中腐蚀铂-金坩埚的难题,对中低碳锰铁合金非常关注的磷元素,检出限为0.0030%(质量分数,下同),测量限为0.0090%,能够满足中低碳锰铁原料的检测要求,并且实现了主次成分的快速定量分析。  相似文献   

4.
刘爱坤 《冶金分析》2015,35(9):42-46
采用王水并滴加氢氟酸溶解含铬镍生铁样品,高氯酸冒烟,采用标准样品/控制样品制作校准曲线,测定过程采用内标法,实现了使用电感耦合等离子体原子发射光谱法(ICP-AES)测定含铬镍生铁中高镍、高铬以及锰、磷、钼、铜和钴等元素的测定。在仪器工作条件下,各元素校准曲线线性相关系数均大于0.999,其中镍元素线性相关系数达到0.999 9。方法中各元素的检出限为0.002 0~0.020 μg/mL。采用实验方法对含铬镍生铁实际样品中的镍、铬、锰、磷、钼、铜和钴含量进行测定,结果与国家标准化学分析方法基本一致,相对标准偏差(RSD,n=11)在0.53%~5.0%之间。  相似文献   

5.
火焰原子吸收光谱法测定汽油中铁镍铜   总被引:4,自引:4,他引:0       下载免费PDF全文
用碘-二甲苯溶液对汽油进行氧化处理,硝酸(1+9)萃取,以原子吸收光谱法测定汽油中铁、镍、铜。铁、镍、铜的测定波长分别为248.3nm,232.0nm,324.8nm;检出限分别为0.0005μg/mL,0.0004μg/mL,0.0001μg/mL;工作曲线的线性范围为0.002~40.00μg/mL,0.001~50.00μg/mL,0.001~6.00μg/mL。对氧化剂、萃取剂的浓度及用量进行了试验,选择了最佳萃取时间。汽油中对被测元素有干扰的元素均在允许量范围内。方法用于汽油样品的分析,铁、镍、  相似文献   

6.
采用盐酸、硝酸溶解样品, 加入氢氟酸和高氯酸, 加热蒸发至干, 以除去四氟化硅和过剩的氢氟酸, 然后以稀盐酸溶解可溶性盐类, 用火焰原子吸收光谱法测定溶液中的铜。考察了不同比例的混合酸溶解样品的效果, 对测定介质种类、酸度和共存元素的干扰进行了试验。结果表明:盐酸+硝酸+氢氟酸+高氯酸可以将样品消解完全;2.5%(体积分数)以内的盐酸介质不影响铜的测定;在100mL溶液中, 40mg镍、1mg钴、10mg铬对0.02mg铜的测定没有影响;200mg的铁对0.02mg以上的铜的测定也没有影响, 但不同量的铁对0.01~0.02mg铜的测定有所影响, 因此测定低含量铜时可采用在空白溶液中加入铁基体的方法消除干扰。铜的检出限为0.011μg/mL, 测定下限为0.038μg/mL。方法用于镍基体料实际样品分析, 测定结果的相对标准偏差(n=11)在1.7%~2.0%范围, 加标回收率在98%~108%之间。  相似文献   

7.
成勇 《冶金分析》2016,36(2):65-70
采用盐酸溶解样品,使用基体匹配法配制校准曲线消除基体效应的影响,选择Ca 317.933 nm、Mg 285.213 nm、Ni 211.647 nm、Cu 324.754 nm、Al 396.152 nm、Fe 238.204 nm作为分析线,电感耦合等离子体原子发射光谱法(ICP-AES)测定硫酸氧钒中钙、镁、镍、铜、铝、铁。进行了1.6 mg/mL钒离子和3.0 mg/mL硫酸根共存体系中基体效应、光谱干扰和连续背景叠加对待测元素测定的影响试验。结果表明,该质量浓度的硫酸根离子对测定不产生影响,而钒对部分待测元素谱线产生光谱干扰,钒基体效应对待测元素均产生正干扰。采用钒基体匹配和同步背景校正相结合的方式消除钒基体的影响,并且优选出未受光谱干扰的各待测元素分析谱线及其背景校正和检测区域,根据试验结果确定了ICP-AES工作条件。钙、镁、镍、铜、铝、铁的质量分数在0.000 1%~0.10%范围内与发射强度成线性,各元素校准曲线的相关系数均大于0.999,背景等效浓度为-0.000 3%~0.000 4%,方法中各元素的检出限为0.000 1%~0.000 3%(质量分数)。按照实验方法测定硫酸氧钒中钙、镁、镍、铜、铝、铁,结果的相对标准偏差(RSD,n=8)为2.6%~14%。实验方法用于测定2个硫酸氧钒样品中钙、镁、镍、铜、铝、铁,结果与电感耦合等离子体质谱法(ICP-MS)的测定结果相吻合。  相似文献   

8.
利用电感耦合等离子体原子发射光谱法(ICP-AES)测定高纯钼样品中杂质元素含量时,由于钼元素具有丰富的谱线,因此钼基体对待测元素干扰较大。为了消除钼基体对待测元素的干扰,实验使用过氧化氢溶解样品,过量硝酸沉淀分离钼基体作为样品前处理步骤,建立了基体分离-电感耦合等离子体原子发射光谱法测定高纯钼中钙、铬、铜、钴、镁、镍、锌、镉和锰的方法。使用4mL过氧化氢溶解样品,10mL硝酸沉淀钼基体,钼的沉淀效率大于99%,沉淀后,各待测元素背景等效浓度均有下降,且回收率都高于85%,随沉淀损失较少。使用高纯钼基体沉淀分离的方法配制校准曲线,各待测元素校准曲线线性相关系数均大于0.9997;方法中各元素的定量限为0.20~2.03μg/g。实验方法用于测定高纯钼样品中钙、铬、铜、钴、镁、镍、锌、镉和锰,结果的相对标准偏差(RSD,n=5)为2.0%~4.8%,测定结果与电感耦合等离子体质谱法(ICP-MS)结果一致。  相似文献   

9.
X射线荧光光谱法测定钒铁合金中钒铝硅锰   总被引:1,自引:0,他引:1       下载免费PDF全文
姚强  朱宇宏  王琼  路通  王燕 《冶金分析》2016,36(9):62-65
采用铂金坩埚直接熔融钒铁合金,存在腐蚀铂金坩埚的危险。实验采用HNO3(1+1)和H2SO4(1+1)先消解钒铁合金,再用熔融制样法将样品浓缩物在铂金坩埚中与四硼酸锂和碳酸锂进行熔融,熔体在铂金坩埚中成型,避免了试样对铂金钳锅的腐蚀。然后以钒铁合金标准样品建立校准曲线,采用OXSAS软件提供的数学模型对谱线重叠效应进行校正,可实现X射线荧光光谱法(XRF)对钒铁合金中V、Al、Si和Mn元素含量的准确测定。精密度试验表明,待测元素的相对标准偏差均低于0.7%(RSD,n=9),能满足钒铁合金中各元素的检测要求。采用实验方法分析钒铁合金标准样品,测定值与认定值吻合良好。  相似文献   

10.
镍钛形状记忆合金中氧含量直接影响合金的记忆和力学等性能,因此需要严格控制其含量。针对块/粉两种形态样品,采用单因素法,通过对仪器功率、助熔剂种类和称样量等试验条件的优化选择,建立了惰气熔融-红外吸收光谱法测定块/粉状镍钛形状记忆合金中氧含量的分析方法。根据氧含量称取0.06~0.12g样品,以镍箔-镍篮为助熔剂,在5.0~5.5kW功率下进行测定,方法定量限为0.0008%。对实际镍钛形状记忆合金进行分析,结果的相对标准偏差(RSD,n=7)小于4%;加标回收率为96%~104%。  相似文献   

11.
闫丽 《冶金分析》2022,42(6):45-50
采用传统化学湿法测定锰铁合金中化学组分需要使用强酸、强碱等化学试剂,耗时长且操作技能不易掌握。为拓展X射线荧光光谱仪(XRF)测定锰铁合金的应用,实验在垫有石墨粉的陶瓷坩埚内,用滤纸包裹定量的样品和锰铁合金氧化剂,于800 ℃马弗炉内进行氧化,氧化后的样品转移至铂-黄坩埚内,以四硼酸锂为熔剂,用高频熔样机制备XRF用玻璃熔片,实现铂-黄坩埚外氧化试样,克服高频熔样机配套铂-黄坩埚容积小、挂壁制备熔剂坩埚等困难,有效解决了锰铁合金样品熔融过程中单质元素与铂形成低温共熔体而损坏铂-黄坩埚的难题。经条件试验,优化后的熔融条件为称样量0.200 0 g,助熔剂用量为5.000 0 g,熔样温度1 050 ℃,熔样时间12 min,进而实现了熔融制样-X射线荧光光谱法对锰铁合金中硅、锰、磷含量的测定。硅、锰、磷校准曲线决定系数不小于0.999 8。实验方法应用于锰铁合金日常检测,硅、锰、磷测定结果的相对标准偏差(RSD, n=10)均小于3%;标准样品的测定值与认定值间误差均可控制在国标化学分析方法允许差范围内。  相似文献   

12.
熔融制样-X射线荧光光谱法(XRF)测定合金样品,需重点解决样品前处理中合金样品侵蚀铂-黄金坩埚的难题。实验以无水四硼酸锂为熔剂,过氧化钡、碳酸锂为氧化剂,建立了熔融制样-X射线荧光光谱法测定锰铁、硅锰合金中锰、硅、磷含量的方法。实验方法采用低温预氧化熔融制样技术,解决了锰铁、硅锰合金对铂-黄金坩埚腐蚀的难题;应用碳烧失基和消去项消除了锰铁、硅锰合金中烧失/烧增量对检测结果的影响。试验进一步探讨了稀释比、氧化剂加入量、熔融温度、熔融时间等条件对锰铁、硅锰合金中锰、硅、磷含量的影响,得出最佳试验条件:稀释比(m无水四硼酸锂∶m试样)为7∶0.25;氧化剂量分别为过氧化钡 0.5000g、碳酸锂0.5000g;熔融温度为1100℃;静置熔融时间为150s。锰、硅、磷的方法检出限分别为10、25、18μg/g。在最佳实验条件下分别对锰铁(GSB03-1687-2004)、硅锰合金(GSB03-1316-2000)国家标准样品进行精密度考察,锰测定结果的相对标准偏差(RSD)分别为0.088%和0.053%(锰),0.35%和1.1%(硅),2.9%和1.2%(磷)。对于锰铁、硅锰合金实际样品,实验方法与国标方法的测定结果一致性较好,能满足常规分析要求。  相似文献   

13.
王娟 《冶金分析》2020,40(6):62-67
为消除硅钙钡合金试样熔融制片时侵蚀铂-黄坩埚的难题,实验中硅钙钡样品以四硼酸锂-碳酸锂(m∶m=2∶1)为预氧化熔剂,在石墨垫底的瓷坩埚中高温熔融成熔球,再将熔球转到铂-黄坩埚中,再用四硼酸锂为熔剂熔融制成玻璃片,这样铂-黄坩埚在熔融制样过程中的腐蚀问题得到了有效解决,实现了熔融制样-X射线荧光光谱法(XRF)对硅钙钡合金中硅、钙、钡、磷、铝的测定。实验确定了最佳制样条件:0.2000g试样、2.0000g四硼酸锂、1.0000g碳酸锂在石墨垫底的瓷坩埚中,500℃灰化完全,900℃熔融15min,取出冷却;移入盛有3.0000g四硼酸锂的铂-黄坩埚中,加0.50mL 300g/L碘化钾脱模剂,在1150℃熔融15min,取出摇匀,再熔融15min,取出摇匀冷却,制得均匀玻璃片。实验方法选用具有适当梯度的硅钙钡合金标样和内控样绘制校准曲线,各待测元素校准曲线的相关系数r≥0.9997。精密度结果表明,各元素测定结果的相对标准偏差(RSD,n=10)在0.11%~5.9%;正确度结果表明,硅钙钡合金标样采用本法分析,其测定值与标准值相吻合。硅钙钡试样采用本法分析,其测定值与行业标准的分析值一致性较好,并进行了成对数据t检验,结果表明本法与行业标准分析方法无显著性差异,能满足日常生产检测要求。  相似文献   

14.
张祥  陆晓明  张毅  何伟 《冶金分析》2021,41(7):40-46
采用X射线荧光光谱法(XRF)分析铝合金样品时,某些合金元素因含量变化、热处理工艺不同,形成不同的金相组织,在微观上分布不均,基体效应难以有效校正,导致校准曲线难以建立。实验采用熔融法把屑样铝合金制备成玻璃片,消除了基体干扰;选用高铝耐材标准样品,并配以高纯氧化物、标准溶液制备了系列校准样品,建立了XRF分析铝合金中铝、硅、镁、铁、钛、锰、铜、锌8种组分的方法。试验确定了最佳制样条件:以8.000 0 g四硼酸锂熔融挂壁作为坩埚保护层,称取0.200 0 g铝合金、2.000 0 g碳酸锂,混匀。将坩埚移入电炉中,预氧化初始温度为600 ℃,升温至700 ℃,保持120 min,缓慢升温至800 ℃;取出冷却,加入约0.045 g溴化氨,移入熔融炉内,1 100 ℃下摇摆熔融30 min,制得均一的玻璃片。考察了方法的检出限,镁为0.066%,硅为0.007 1%,其余元素低于硅的检出限;实验方法用于测定铝合金屑样,结果的相对标准偏差(RSD,n = 9)为0.31%~11%;实验方法测定6个标准样品,测定值与标准值相一致。  相似文献   

15.
熔融制样-X射线荧光光谱法测定钛铁合金中化学成分,核心技术是合金试样氧化技术,以有效避免样品熔融过程中铂-金坩埚受到侵蚀。在石墨垫底的瓷坩埚内以专用助熔剂将钛铁样品氧化成钛铁熔球,以四硼酸锂与碳酸锂混合熔剂熔融制备成玻璃片,建立X射线荧光光谱法(XRF)测定钛铁中钛、硅、锰、磷、铝含量的方法。试验探讨了熔剂选择、助熔剂用量、氧化条件、稀释比、脱模剂、熔融时间等条件对玻璃片质量及检测结果的影响,确定了最佳氧化、熔融实验条件。熔融制得的玻璃片强度高、质地均匀、检测面光洁,满足XRF测定要求。使用有证标准物质建立校准曲线,钛、硅、锰、磷、铝校准曲线相关系数介于0.999 6~1.000 0之间,校准曲线相关性满足XRF要求。方法应用于钛铁合金样品检测,各元素测定结果的相对标准偏差(RSD)介于0.25%~6.5%之间;准确度实验表明,钛铁标准样品测定结果与认定值相符。实验方法解决了钛铁熔融制样过程腐蚀铂-金坩埚问题,实现了钛铁合金中钛、硅、锰、磷、铝含量的同时快速分析,能够满足钛铁合金质量控制及作为炼钢生产指导的日常检测需求。  相似文献   

16.
使用熔融制样-X射线荧光光谱法(XRF)测定磷铁合金样品,关键是要解决样品前处理中合金样品侵蚀铂-黄坩埚的难题。采用陶瓷坩埚石墨垫底低温预氧化后,高温熔融制样,建立了X射线荧光光谱测定磷铁中磷、硅、锰和钛的方法。选用磷铁标准样品,按照一定的比例合成及在磷铁标准样品中加入标准溶液的方式,配制成一定梯度的磷铁校准样品,拓宽了校准曲线的含量范围。以碳酸锂和过氧化钡复合氧化剂,从400℃缓慢升温至800℃,对磷铁样品进行预氧化,避免了熔融过程中对铂-黄坩埚的腐蚀。实验结果表明,以四硼酸锂为熔剂,溴化铵溶液为脱模剂,稀释比40∶1,于1100℃下熔融20min,制得的玻璃熔片均匀稳定。各元素的检出限为32.47~57.49μg/g。在最佳实验条件下对磷铁标准样品进行测定,各元素测定结果的相对标准偏差(RSD,n=10)为0.28%~1.1%。实验方法应用于磷铁实际样品的测定,与其他方法的测量结果无显著性差异。  相似文献   

17.
陈芳  吴林飞  雷黎 《冶金分析》2022,42(1):71-77
镍基高温合金粉末中氧和氮对镍基高温合金综合性能有重要影响.采用氧氮氢联用分析仪对镍基高温合金粉末中氧、氮含量同时测定的方法进行研究.探讨分析功率、助熔剂、石墨坩埚、镍箔质量与称样量组合对测试结果的影响,推荐合适的测试条件.结果 表明:分析功率为5.5 kW时,样品完全熔融,释放曲线峰形对称且无拖尾;0.2g镍箔作为助熔...  相似文献   

18.
刘伟  曹吉祥  张瑜 《冶金分析》2019,39(2):46-50
钨铁合金是冶炼高速钢等钨合金钢的加入剂,目前采用化学湿法分析钨、硅、锰、磷和铜的含量,实验流程很长,操作相对繁琐。实验采用碳酸锂和过氧化钠作氧化剂预氧化样品、熔融方法制样,建立了X射线荧光光谱法(XRF)测定钨铁合金中硅、锰、磷、铜、钨5 种元素含量的检测方法。绘制校准曲线时,采用钨铁标准样品中加入三氧化钨纯物质及硅、锰、磷、铜标准溶液的方法扩展了校准曲线线性范围。实验表明,以四硼酸锂为熔剂,溴化铵为脱模剂,试样与熔剂比例为1∶30,在1150℃熔融炉中熔融10min,制得表面光滑、无气孔、无结晶的均匀玻璃片。实验方法用于测定钨铁合金样品中硅、锰、磷、铜、钨,测定结果的相对标准偏差(RSD,n=8)为0.20%~5.2%;按照实验方法测定3个钨铁合金样品中硅、锰、磷、铜、钨,并与相应的国家标准方法进行比对,结果相一致。  相似文献   

19.
采用氢氧化钾碱熔法处理样品,以铑校正铍、铯、铊、铪、铀、钍,以铼校正镓、铌、钽、锆,建立了电感耦合等离子体质谱法测定铍、铯、镓、铊、铌、钽、锆、铪、铀、钍10种元素的方法。分别选用银坩埚、镍坩埚、刚玉坩埚熔融空白样品进行试验,结果表明,采用银坩埚时各元素的空白响应信号值与镍坩埚和刚玉坩埚相比均较低。对熔融条件进行了优化,确定熔融温度为600℃、熔融时间为8min。分别采用去离子水、2%(体积分数)硝酸上机测量,并记录各元素的响应信号值,与测定地质实际样品中各元素的响应信号值进行对比,结果表明,其对测定结果的影响可以忽略不计。在优化的实验条件下,各元素校准曲线线性相关系数均在0.9990以上,方法的检出限为0.023~0.049μg/g,测定下限为0.078~0.16μg/g。采用实验方法对岩石成分分析标准物质中铍、铯、镓、铊、铌、钽、锆、铪、铀、钍10种元素进行测定,测定结果与认定值基本一致,相对误差(RE)在-8.3%~9.6%之间,相对标准偏差(RSD,n=11)均不大于4.2%。采用实验方法对2个从野外采回的地质实际样品进行测定,并加入岩石成分分析标准物质进行加标回收试验,上述10种元素的回收率在96%~102%之间。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号