首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
In this paper, a formulation for a spatial sliding joint is derived using absolute nodal coordinates and non-generalized coordinate and it allows a general multibody move along a very flexible cable. The large deformable motion of a spatial cable is presented using absolute nodal coordinate formulation, which is based on the finite element procedures and the general continuum mechanics theory to represent the elastic forces. And the nongeneralized coordinate, which is related to neither the inertia forces nor the external forces, is used to describe an arbitrary position along the centerline of a very flexible cable. Hereby, the non-generalized coordinate represents the arc-length parameter. The constraint equations for the sliding joint are expressed in terms of generalized coordinate and nongeneralized coordinate. In the constraint equations for the sliding joint, one constraint equation can be systematically eliminated. There are two independent Lagrange multipliers in the final system equations of motion associated with the sliding joint. The development of this sliding joint is important to analyze many mechanical systems such as pulley systems and pantograph-catenary systems for high speed-trains.  相似文献   

2.
A robot with distributed flexibility in the links and lumped flexibility in the joints is considered in this paper. First the model of the system in free motion is formulated as a set of ordinary differential equations, adopting a finite number of modes of the link deformation. Then algebraic constraint equations on the generalized coordinates of the system are added, to account for the loss of degrees of freedom due to the contact with rigid environment. A reduced order model, expressed in the residual degrees of freedom is then derived, based on a coordinate partitioning procedure. The singularly perturbed model of the system is finally computed, and the expression of the fast subsystem is given. The special cases of a robot with rigid joints or rigid links are also addressed.  相似文献   

3.
The use of a multibody methodology to describe the large motion of complex systems that experience structural deformations enables to represent the complete system motion, the relative kinematics between the components involved, the deformation of the structural members and the inertia coupling between the large rigid body motion and the system elastodynamics. In this work, the flexible multibody dynamics formulations of complex models are extended to include elastic components made of composite materials, which may be laminated and anisotropic. The deformation of any structural member must be elastic and linear, when described in a coordinate frame fixed to one or more material points of its domain, regardless of the complexity of its geometry. To achieve the proposed flexible multibody formulation, a finite element model for each flexible body is used. For the beam composite material elements, the sections properties are found using an asymptotic procedure that involves a two-dimensional finite element analysis of their cross-section. The equations of motion of the flexible multibody system are solved using an augmented Lagrangian formulation and the accelerations and velocities are integrated in time using a multi-step multi-order integration algorithm based on the Gear method.  相似文献   

4.
Modeling of multibody dynamics with flexible links is a challenging task, which not only involves the effect of rigid body motion on elastic deformations, but also includes the influence of elastic deformations on rigid body motion. This paper presents coupling characteristics of rigid body motions and elastic motions of a 3-PRR parallel manipulator with three flexible intermediate links. The intermediate links are modeled as Euler–Bernoulli beams with pinned-pinned boundary conditions based on the assumed mode method (AMM). Using Lagrange multipliers, the fully coupled equations of motions of the flexible parallel manipulator are developed by incorporating the rigid body motions with elastic motions. The mutual dependence of elastic deformations and rigid body motions are investigated from the analysis of the derived equations of motion. Open-loop simulation without joint motion controls and closed-loop simulation with joint motion controls are performed to illustrate the effect of elastic motion on rigid body motions and the coupling effect amongst flexible links. These analyses and results provide valuable insight to the design and control of the parallel manipulator with flexible intermediate links.  相似文献   

5.
Complex Flexible Multibody Systems with Application to Vehicle Dynamics   总被引:5,自引:0,他引:5  
A formulation to describe the linear elastodynamics offlexible multibody systems is presented in this paper. By using a lumpedmass formulation the flexible body mass is represented by a collectionof point masses with rotational inertia. Furthermore, the bodydeformations are described with respect to a body-fixed coordinateframe. The coupling between the flexible body deformation and its rigidbody motion is completely preserved independently of the methods used todescribe the body flexibility. In particular, if the finite elementmethod is chosen for this purpose only the standard finite elementparameters obtained from any commercial finite element code are used inthe methodology. In this manner, not only the analyst can use any typeof finite elements in the multibody model but the same finite elementmodel can be used to evaluate the structural integrity of any systemcomponent also. To deal with complex-shaped structural models offlexible bodies it is necessary to reduce the number of generalizedcoordinates to a reasonable dimension. This is achieved with thecomponent mode synthesis at the cost of specializing the formulation toflexible multibody models experiencing linear elastic deformations only.Structural damping is introduced to achieve better numerical performancewithout compromising the quality of the results. The motions of therigid body and flexible body reference frames are described usingCartesian coordinates. The kinematic constraints between the differentsystem components are evaluated in terms of this set of generalizedcoordinates. The equations of motion of the flexible multibody systemare solved by using the augmented Lagrangean method and a sparse matrixsolver. Finally, the methodology is applied to model a vehicle with acomplex flexible chassis, simulated in typical handling scenarios. Theresults of the simulations are discussed in terms of their numericalprecision and efficiency.  相似文献   

6.
7.
8.
To consider large deformation problems in multibody system simulations afinite element approach, called absolute nodal coordinate.formulation,has been proposed. In this formulation absolute nodal coordinates andtheir material derivatives are applied to represent both deformation andrigid body motion. The choice of nodal variables allows a fullynonlinear representation of rigid body motion and can provide the exactrigid body inertia in the case of large rotations. The methodology isespecially suited for but not limited to modeling of beams, cables andshells in multibody dynamics.This paper summarizes the absolute nodal coordinate formulation for a 3D Euler–Bernoulli beam model, in particular the definition of nodal variables, corresponding generalized elastic and inertia forces and equations of motion. The element stiffness matrix is a nonlinear function of the nodal variables even in the case of linearized strain/displacement relations. Nonlinear strain/displacement relations can be calculated from the global displacements using quadrature formulae.Computational examples are given which demonstrate the capabilities of the applied methodology. Consequences of the choice of shape.functions on the representation of internal forces are discussed. Linearized strain/displacement modeling is compared to the nonlinear approach and significant advantages of the latter, when using the absolute nodal coordinate formulation, are outlined.  相似文献   

9.
In constrained systems of rigid and flexible bodies, the gross rigid body motion and elastic deformation cannot be controlled independently because of the coupling between these two motions. A hybrid control method for suppressing the vibration of a geometrically nonlinear flexible multi-body system is proposed in this paper. This method utilizes both the passive and active control concepts. In the passive control strategy, flexible components in the system are manufactured from fiber-reinforced composite laminates which have high strength-to-weight and stiffness-to-weight ratios. On the other hand, the active control scheme used in this paper utilizes measurable velocity and acceleration signals to produce the command signals required to activate the actuator forces. A small number of sensors and controllers with constant gain factors are used in order to obtain a low-cost and simple control system. The generalized active control forces associated with the system generalized coordinates are developed using the virtual work and are written in terms of the coupled set of reference and elastic coordinates. The system differential equations of motion are developed using Lagrange's equation and the Jacobian matrix of the nonlinear algebraic constraint equations describing mechanical joints in the system is used to identify a set of independent generalized coordinates. The associated independent differential equations are identified and are written in the state space formulation. The characteristics of the proposed hybrid control are evaluated through computer simulations of a seven-body flexible vehicle. The performance characteristics of the hybrid control are also compared to the performance characteristics of the passive and active controls.  相似文献   

10.
In the paper a numerical approach for deriving the nonlinear explicitform dynamic equations of rigid and flexible multibody systems ispresented. The dynamic equations are obtained as Ordinary DifferentialEquations for generalized coordinates and without algebraic constraints.The Finite Element Theory is applied for discretization of flexiblebodies. The minimal set of the generalized coordinates includesindependent joint motions, as well as independent small flexibledeflections of finite element nodes. The node deflections and stiffnessmatrices are calculated with respect to the moving relative coordinatesystems of the flexible bodies. The positions and orientations ofelement and substructure coordinate systems are updated according to thenode deflections. A major step of the numerical process is the kinematicanalysis and calculation of matrices of partial derivatives of thequasi-coordinates (dependent joint motions and coordinates of points andnodes) with respect to the generalized coordinates. The inertia terms inthe dynamic equations are obtained multiplying the matrices of thepartial derivatives by the mass matrices of the rigid and flexiblebodies. Stiffness properties of flexible bodies are presented in thedynamic equations by stiff forces that depend on the generalizedrelative flexible deflections only. Several examples of large motion ofbeam structures show the effectiveness of the algorithm.  相似文献   

11.
In the present study, for the first time, flexible multibody dynamics for a three-link serial robot with two flexible links having active prismatic joints is presented using an approximate analytical method. Transverse vibrations of flexible links/beams with prismatic joints have complicated differential equations. This complexity is mostly due to axial motion of the links. In this study, first, vibration analysis of a flexible link sliding through an active prismatic joint having translational motion is considered. A rigid-body coordinate system is used, which aids in obtaining a new and rather simple form of the kinematic differential equation without the loss of generality. Next, the analysis is extended to include dynamic forces for a three-link planar serial robot called PPP (Prismatic, Prismatic, Prismatic), in which all joints are prismatic and active. The robot has a rigid first link but flexible second and third links. To model the prismatic joint, time-variant constraints are written, and a motion equation in a form of virtual displacement and virtual work of forces/moments is obtained. Finally, an approximate analytical method called the “constrained assumed modes method” is presented for solving the motion equations. For a numerical case study, approximate analytical results are compared with finite element results, which show that the two solutions closely follow each other.  相似文献   

12.
In the present paper, it is shown how one can employ existing rigid body codes to handle systems containing elastic plates by using a Rayleigh–Ritz discretization procedure. The equations of motion are formulated for a rectangular plate undergoing large rigid body motions but small elastic deformations. Geometric nonlinearities in the elastic coordinates are taken into account to include the effect of dynamic stiffening. As an example, a spin-up maneuver for a simply-supported plate is treated.  相似文献   

13.
This paper presents a mixed modal and tangent coordinate technique for computer aided analysis of flexible mechanical systems whose components undergo large translations and large rotations. In this model the configuration of a flexible component is identified by using two sets of generalized coordinates, namely rigid body and elastic coordinates. The rigid body coordinates define the location and orientation of a body axis, whereas the elastic coordinates define the displacement field of a component with respect to its body axis. The elastic coordinates are introduced by using finite element discretization to model flexible components with complex geometries. A modal analysis technique is used to identify the elastic mode shapes and to eliminate insignificant higher frequency modes. An orthonormalization of constraint Jacobian matrix associated with rigid body coordinates is used to identify the rigid body tangent coordinates. The resulting modal and tangent coordinates are used to develop an automated numerical integration scheme to solve the system differential and algebraic equations. Two numerical examples are considered to show the feasibility of dynamic analysis of flexible mechanical systems using this scheme.  相似文献   

14.
Consider a spatial multibody system with rigid and elastic bodies. The bodies are linked by rigid interconnections (e.g. revolute joints) causing constraints, as well as by flexible interconnections (e.g. springs) causing applied forces. Small motions of the system with respect to a given nominal configuration can be described by linearized dynamic equations and kinematic constraint equations. We present a computer-oriented procedure which allows to develop a minimum number of these equations. There are three problems. First: algorithmic selection of position coordinates; second: condensation of the dynamic equations; third: evaluation of the constraint forces. To demonstrate the procedure, a closed loop multibody system is used as an example.  相似文献   

15.
A coupled torsional-bending finite element with shear deformations and rotatory inertia for vibration of nonsymmetric thin walled beams axially loaded is developed. The equations of motion are based on Vlasov’s theory of thin-walled beams, which are modified to include an axial load. The formulation is also applicable to solid beams. The Hermite cubic polynomials are adopted as shape functions. Mass, elastic stiffness and geometrical stiffness matrices of unsymmetrical cross-section beams are presented. In order to verify the accuracy of this theory and the corresponding beam element developed, a numerical study is presented and compared with the literature and experimental tests.  相似文献   

16.
A nonlinear two-node superelement is proposed for the modeling of flexible complex-shaped links for use in multibody simulations. Assuming that the elastic deformations with respect to a corotational reference frame remain small, substructuring methods may be used to obtain reduced mass and stiffness matrices from a linear finite element model. These matrices are used in the derivation of potential and kinetic energy expressions of the nonlinear two-node superelement. By evaluating Lagrange’s equations, expressions for the internal and external forces acting on the superelement can be obtained. The inertia forces of the superelement are derived in terms of absolute nodal velocities and accelerations, which greatly simplifies the dynamic formulation. Three examples are included. The first two examples are used to validate the method by comparing the results with those obtained from nonlinear beam element solutions. We consider a benchmark simulation of the spin-up motion of a flexible beam with uniform cross-section and a similar simulation in which the beam is simultaneously excited in the out-of-plane direction. Results from both examples show good agreement with simulation results obtained using nonlinear finite beam elements. In a third example, the method is applied to an unbalanced rotating shaft, illustrating the potential of the proposed methodology for a more complex geometry.  相似文献   

17.
An active pulse control method is developed to reduce the vibrations of multibody systems resulting from impact loadings. The pulse, which is a function of system generalized coordinates and velocities, is determined analytically using energy and momentum balance equations of the impacting bodies. Elastic components in the multibody system are discretized using the finite element method. The system equations of motions and nonlinear algebraic constraint equations describing mechanical joints between different components are written in the Lagrangian formulation using a finite set of coupled reference position and local elastic generalized coordinates. A set of independent differential equations are identified by the generalized coordinate partitioning of the constraint Jacobian matrix. These equations are written in the state space formulation and integrated forward in time using a direct numerical integration method. Dependent coordinates are then determined using the constraint kinematic relations. Points in time at which impact occurs are monitored by an impact predictor function, which controls the integration algorithms and forces for the solution of the momentum relation, to define the jump discontinuities in the composite velocity vector as well as the system reaction forces. The effectiveness of the active pulse control in reducing the vibration of flexible multibody aircraft during the touchdown impact is investigated and numerical results are presented.  相似文献   

18.
Geometrically nonlinear analysis of multibody systems   总被引:3,自引:0,他引:3  
A method for the dynamic analysis of geometrically nonlinear inertia-variant flexible systems is presented. Systems investigated consist of interconnected rigid and flexible components that undergo large rigid body rotations as well as nonlinear elastic deformations. The differential equations of motion are formulated using Lagrange's equation and nonlinear constraint equations describing mechanical joints in the system are adjoined to the system differential equations of motion using Lagrange's multipliers. A computer program that systematically constructs and numerically solves the system equations of motion is used to predict the effect of the geometric elastic nonlinearities on the dynamic response of flexible multibody systems. The automated formulation presented imposes no limitations on the size of the mechanical systems to be treated. Two examples, namely a slider crank and six-bar mechanisms, are presented to illustrate the effect of introducing geometric nonlinearities to the dynamics of flexible multibody systems.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号