首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 359 毫秒
1.
采用草酸盐-热解法制备钴/锌双金属多孔氧化物复合材料,并用于催化过一硫酸盐(PMS)处理亚甲基蓝(MB)溶液。以Co(NO3)2·6H2O和Zn(NO3)2·6H2O为金属离子源,草酸为沉淀剂,Co2+和Zn2+同步沉淀获得钴锌草酸盐前驱体,将草酸盐热解后获得具有不同Co/Zn摩尔比的多孔Co3O4/ZnO复合氧化物催化剂。结果表明:Co/Zn原料比为1∶5的复合材料(Co1Zn5)催化活性最佳,在催化剂用量和PMS浓度分别为0.02 g·L-1和0.6 mmol·L-1时,其对MB溶液的降解率可达98.49%。电子顺磁共振(EPR)测试结果表明,Co1Zn5/PMS催化氧化体系对MB的降解遵循自由基和非自由基双重机理。Co1  相似文献   

2.
以正硅酸乙酯(TEOS)为硅源,聚乙烯吡咯烷酮(PVP)为助纺剂,采用静电纺丝结合碳热还原制备出结晶度较高的β-SiC纤维,其比表面积为92.6 m2/g,表现出双电层电容储能特征,比电容为155.7 F/g。然后,利用水热法在SiC纤维表面生长出大量直径约为15 nm的NiCo2O4纳米线,得到NiCo2O4纳米线/SiC复合纤维。测试表明,NiCo2O4纳米线/SiC复合纤维中镍和钴元素分别以Ni2+/Ni3+和Co2+/Co3+价态形式存在,由于NiCo2O4纳米线与SiC纤维的协同作用,NiCo2O4纳米线/SiC复合纤维比电容显著提高,并表现出双电层和赝电容并存的特征,比电容可达300.3 F/g,当功率密度为58.1 W/kg时,NiCo2O4纳米线/SiC复合纤维能量密度为60.1 W·h/kg。   相似文献   

3.
以Co(NO)3·6H2O为钴源,(NH4)2S2O8为聚合引发剂和硫源,通过原位聚合和煅烧两步法制备Co9S8/C复合材料,同时,为了进一步提高其电化学性能,在原位聚合过程中掺杂碳纳米管(CNTs),得到Co9S8/CNTs/C复合材料,并研究CNTs掺杂对Co9S8/CNTs/C复合材料电化学性能的影响。结果表明:复合物中CNTs的作用主要在于提高复合材料的电子和离子传导特性,使所制备的复合材料表现出更高的比容量。当CNTs掺杂量为0.2g时所制备Co9S8/CNTs/C-0.2复合物在0.1A/g、0.2A/g、0.3A/g、0.5A/g、1.0A/g和2.0A/g时比容量分别为1117mAh/g、985mAh/g、916mAh/g、846mAh/g、793mAh/g和710m...  相似文献   

4.
分别采用Cu(NO3)2、H2O2和KMnO4对椰壳活性炭进行改性,研究了活性炭微观结构、表面化学性质变化,及其对SO2、NOx等酸性腐蚀性气氛的吸附性能。结果表明,Cu(NO3)2改性活性炭比表面积显著降低,平均孔径有所下降,Cu(NO3)2微晶分布于活性炭表面及微观孔道内,表面以碳、铜、氧和氮元素为主。H2O2改性活性炭比表面积有所增加,平均孔径减小,H2O2与活性炭表层反应后起到刻蚀效应,引入丰富的微纳孔道结构,使其表面含氧官能团增加,氧元素含量提升。KMnO4改性活性炭比表面积和平均孔径略微降低,KMnO4与活性炭表层反应后含氧官能团增加,反应产物附着于活性炭表面,改变其微观结构。三种方式改性的活性炭对SO  相似文献   

5.
由于钒酸镍(Ni3V2O8)中钒(V)和镍(Ni)元素存在多价态变化,具有化学活性高、理论比电容大,而受到广泛关注。以NH4VO3、H2C2O4和Ni(CH3COO)2为试剂,蒲棒绒毛为原料,两步水热法制备了钒酸镍/生物质碳复合材料(Ni3V2O8/BC)。结果表明:Ni3V2O8/BC其在三电极体系下电流密度为1.0A/g时,具有较高的比电容为达到953F/g。因此,Ni3V2O8/BC复合材料是作为高性能超级电容器的潜在材料。  相似文献   

6.
以凹凸棒土(ATP)为载体, 以Ce(NO3)3·6H2O和La(NO3)3·6H2O为原料, 以C6H12N4(HMT)为沉淀剂, 采用均相沉淀法制备了不同铈镧比的CeO2-La2O3/ATP(Ce:La=9:1~3:7, 摩尔比, 下同)复合材料。用TG-DSC、 TEM、 XRD和FTIR对所制备复合材料的微观结构和形貌进行表征, 并分别考察不同铈镧比和H2O2添加量对酸性品红模拟废水脱色降解的影响。结果表明, 当Ce:La=5:5时, CeO2-La2O3固溶体颗粒均匀分布在ATP表面, 颗粒尺寸为5~10 nm。随着铈镧摩尔比的增加, 酸性品红的降解率呈先增后减的趋势, 且当Ce:La=5:5、 H2O2为10 mL、 酸性品红浓度为100 mg/L时, 降解效果最好, 300 min后的最大降解率达82%。  相似文献   

7.
作为锂离子电池的负极材料,Co3O4因其具有890 mA·h/g的高理论比容量而备受关注。本文通过简单的化学溶液法和热处理制备了Co3O4与膨胀石墨(EG)自组装的多面体复合材料(Co3O4-EG)。当用作锂离子电池的负极材料时,EG与Co3O4质量比为1∶3的Co3O4-EG复合材料电极在0.1 C的电流倍率下经过400次循环后的可逆容量仍高达418 mA·h/g,高于其他Co3O4-EG复合材料(质量比1∶4循环190圈后容量为273 mA·h/g,质量比1∶5循环135圈后的容量为329 mA·h/g),且所有Co3O4-EG复合材料的放电容量均高于纯Co3O4(400圈循环后容量为40 mA·h/g)。Co3O...  相似文献   

8.
以Co(NO3)2•6H2O和胆酸钠溶液混合制备了超分子自组装凝胶纳米纤维, 以此凝胶纳米纤维为自模板, NH3•H2O为沉淀剂, 在温和条件下制备了纳米α-Co(OH)2。X射线衍射(XRD)、红外光谱(FT-IR)、扫描电子显微镜(SEM)及透射电子显微镜(TEM)测试表征了其组成和微观结构。实验结果表明所得材料为纯相一维纳米纤维交错形成疏松网状结构的α-Co(OH)2, 其直径在100~200 nm之间。用循环伏安和恒电流充放电等测试方法对α-Co(OH)2电化学电容行为进行了研究, 结果表明: 所得α-Co(OH)2在6 mol/L KOH溶液中, 0~0.5 V(vs Hg/HgO)电位范围内, 电流密度为1 A/g时, 其单电极比容量达到1200 F/g, 经过800周循环, 比容量稳定保持在初始容量的75%。其独特的纳米结构使其易于浸入电解液, 具有快速的电化学响应特性, 提高了电极材料的有效利用率, 这种自模板法为制备纳米电容器电极材料提供了简易的途径。  相似文献   

9.
本研究以氧化石墨烯分散液(GO)和硝酸镍(Ni(NO3)2·6H2O)为前驱体, 通过一步水热法制备自支撑三维还原氧化石墨烯/NiO复合电极材料(3D rGO/NiO)。用XRD和SEM等分析结果表明, 纳米NiO颗粒均匀分散在三维多孔石墨烯表面。当GO与Ni(NO3)2·6H2O质量比为1 : 4时, 3D rGO/NiO在电流密度为1 A·g-1 下比电容可达1208.8 F·g-1; 当电流密度从0.2 A·g-1增加到10 A·g-1时, 复合电极材料电容保持率高于72.6%; 在电流密度为10 A·g-1下进行恒流充放电循环测试10000次后, 其比电容仍然保持为初始比电容的93%, 表明该复合电极材料具有良好的倍率性能和循环稳定性能。3D rGO/NiO复合电极材料具有比纯NiO或rGO更优异的电化学性能。  相似文献   

10.
Co2FeAI nanoparticles were synthesized by reducing the coprecipitated precursor of CoCI2·6H2O, Fe(NO33-9H2O and AI2(SO43·18H2O under H2 atmosphere with various annealing temperatures and durations.X-ray diffraction and transmission electron microscopy were used to characterize the crystal structure and microstructure of Co2FeAI particles,respectively.The investigation indicates that the crystal structure of Co2FeAI particles tends to be B2 structure,in which atoms are partially ordered.The saturation magnetization and hyperfine field of Co2FeAI particles,which were measured under a vibrating sample magnetometer and a 57Fe Mossbauer spectroscope,are consistent with those of the bulk sample and thin films.Furthermore,the higher annealing temperature and the longer annealing time,the better crystallinity of Co2FeAI and more ordered arrangement of atoms will be.It turned out that the coprecipitation thermal deoxidization method could be an easy and high efficient way to obtain the half-metallic Co2FeAI nanoparticles.  相似文献   

11.
以TiO2(P25)、 Fe(NO3)3·9H2O、 Zn(NO3)2·6H2O和氧化石墨烯(GO)为原料,通过一步溶剂热法合成可磁分离的ZnFe2O4-TiO2/还原氧化石墨烯(rGO)复合材料。采用UV-Vis、 Raman、 XRD、 SEM和EDS对ZnFe2O4-TiO2/rGO复合材料进行表征,并研究不同rGO比例的ZnFe2O4-TiO2/rGO对模拟染料废水亚甲基蓝(MB)的光催化降解性能。GO在溶剂热反应过程中,被还原成rGO。由于ZnFe2O4和rGO的加入,不仅使ZnFe2O4-TiO2/rGO实现对可见光的吸收,而且使其具有磁性,便于分离和回收利用。当GO质量分数为5wt%时, ZnFe2O4-TiO2/rGO显现出对MB最佳的光催化活性, 60 min光照后的降解率达到99.1%。通过光催化活性物种捕获实验得出ZnFe2O4-TiO2/rGO复合材料降解MB的过程中,活性物种主要为·OH和·O2-, TiO2导带(CB)中的光生电子(e+)转移到ZnFe2O4的价带(VB),遵循Z型转移机制。光催化剂稳定性实验表明, ZnFe2O4-TiO2/rGO复合材料具有优越的稳定性,可作为太阳光照射下降解有机染料的光催化剂。  相似文献   

12.
以葡萄糖为模板, 硝酸锌、硝酸铜和硝酸铝为原料, 采用水热法制备高比表面Zn-CuO/CuAl2O4复合空心球。采用XRD、SEM、HRTEM、BET、DRS和PL等手段对样品进行表征, 结果表明: 在600℃下焙烧的Zn-CuO/CuAl2O4复合物呈空心球状, 球体直径约为2 μm, 比表面积高达214.97 m2/g。引入Zn有助于提高样品对紫外和可见光的吸收能力, 减少光生电子空穴对的复合, 光催化活性显著提高。在模拟太阳光照下, 以甲基橙溶液为目标降解物, 考察样品的煅烧温度和Zn加入量对光催化活性的影响。当Zn加入量为0.5wt%, 煅烧温度为600℃时, 样品的光催化活性最佳。光照60 min, 0.5 g/L光催化剂用量对25 mg/L甲基橙溶液的脱色率高达97%。  相似文献   

13.
超细钙钛矿型LaCoO3的制备、表征及光催化性能研究   总被引:1,自引:1,他引:0  
以La2O3和Co(NO32·6H2O为主要原料,用溶胶-凝胶法结合超临界流体干燥技术制备了超细钙钛矿型LaCoO3。采用TG-DTA、XRD、FT-IR和TEM检测手段进行表征;以15W的紫外灯为光源,用甲基橙溶液的光催化降解测试超细LaCoO3的催化活性。结果显示,250℃时经超临界流体干燥,可获取直径小于10nm的无定形LaCoO3球形颗粒;850℃热处理后,可制得粒径介于15~35nm之间的钙钛矿型LaCoO3类球形颗粒;900℃时La-Co超细粒子中晶相成分为LaCoO3和La2O3,无定形成分为Co2O3,稀土镧影响了钴氧化物的晶化;在超细LaCoO3催化作用下,10mg/L甲基橙溶液500mL完全降解约需4h。  相似文献   

14.
采用静电纺丝技术结合高温煅烧方法,以乙酰丙酮钴(Co(C5H7O2)3)为前驱物,制备了由Co3O4纳米颗粒组成的多孔纳米纤维(Co3O4 NFs),其比表面积高达83 m2·g?1,并将制得的多孔Co3O4 NFs用于锂-空气电池催化剂。多孔Co3O4 NFs为电池反应提供了充足的活性位点及反应物的传输通道,有利于电池反应的顺利进行,使电池的放电容量得到极大地提高。另外,Co3O4催化剂的加入提高了电极的催化活性,较大程度降低了电池的过电位。值得注意的是,Co3O4催化剂的加入同时调控了锂-空气电池放电产物Li2O2的形貌,得到的放电产物Li2O2尺寸更小,在电极表面分布更为均匀,该形态的Li2O2在充电过程中更容易被分解,有利于提高电池的充电效率,同时电极的体积效应也可得到极大缓解。得益于以上优势,基于多孔Co3O4 NFs/炭黑Super P (Co3O4 NFs/SP)正极的锂-空气电池的电化学性能得到较大提高,50 mA·g?1电流密度下Co3O4 NFs/SP的放电容量高达10600 mA·h·g?1,电池可实现100次的充放电循环。   相似文献   

15.
以LiOH·H2O、NH4VO3和Mn(CH3COO)2·4H2O为原料,以柠檬酸(C6H8O7·H2O)为络合剂,用凝胶溶胶法按xLiV3O8·yLiMn2O4(x∶y=1∶0,4∶1,8∶l,12∶1,16∶1)合成出锂离子电池正极材料Mn4+-LiV3O8,并对其结构和电化学性能进行了研究.结果表明,用该法制备的...  相似文献   

16.
采用静电纺丝与高温煅烧相结合的方法, 以聚乙烯吡咯烷酮(PVP)、九水合硝酸铁(Fe(NO3)3·9H2O)和六水合硝酸钴(Co(NO3)2·6H2O)为原料, 制备出了类鱼骨结构的CoFe2O4纳米纤维, 并研究了煅烧温度对CoFe2O4纳米纤维形貌、磁性能以及微波吸收性能的影响。结果表明: 随着煅烧温度的升高, CoFe2O4纤维的结晶度和晶粒尺寸逐渐增大, 纳米纤维的表面形貌由光滑发展为粗糙多孔, 煅烧温度超过800 ℃时, 纳米纤维呈现类鱼骨结构; 随着煅烧温度增加纤维直径逐渐减小, 900 ℃煅烧的纤维平均直径为80.3 nm。所制备的纳米纤维经振动样品磁强计(VSM)测试结果表明, 饱和磁化强度(Ms)随着煅烧温度的升高而增加, 在900 ℃煅烧条件下纤维的Ms达87.13 A·m2/kg。矢量网络分析仪测试结果表明, 不同煅烧温度下纤维的微波吸收性能差异明显, 800 ℃下煅烧的纤维具有最佳的吸波性能。CoFe2O4纳米纤维通过磁滞损耗和涡流损耗机制吸收电磁波, 煅烧产生的孔洞和类鱼骨形貌有利于电磁波在孔道表面多次反射从而增加反射损耗。  相似文献   

17.
以5-磺基水杨酸和戊二酸为螯合和氧化试剂,在水热条件下将硫酸钴氧化成纳米级Co3O4。以碳纳米管薄膜为载体将Co3O4颗粒紧密地附着在碳纳米管上使其填充入碳纳米管薄膜的空隙生成Co3O4/碳纳米管复合材料薄膜(Co3O4@CNTs),并研究其储锂性能。电化学测试结果表明,Co3O4@CNTs薄膜具有较高的放电比容量和优异的倍率性能,在0.2C倍率下初始放电比容量高达1712.5 mAh·g-1,100圈循环后放电比容量为1128.9 mAh·g-1的;在1C倍率下100圈循环后放电比容量仍然保持527.8 mAh·g-1。Co3O4@CNTs薄膜优异的性能源于Co3O4与CNTs的协同作用。高分散性的Co3O4增大了活性材料与电解液之间的接触面积,CNTs有助于形成良好的导电网络提高电子电导率,进而提高了Co3O4负极材料的循环性能和倍率性能。  相似文献   

18.
首先合成氨基功能化Fe3O4(NH2—Fe3O4),并以NH2—Fe3O4为磁核,六水合硝酸锌(Zn(NO3)2·6H2O)为锌源,在表面活性剂聚乙二醇(PEG,PEG-400)辅助下通过水热法制备PEG修饰的ZnO(NH2—Fe3O4@PEG@ZnO)磁性复合材料。利用XRD、SEM、TEM、XPS、紫外-可见-近红外分光光度计、比表面吸附仪(BET)、振动样品磁强计(VSM)等对NH2—Fe3O4@PEG@ZnO复合材料组成、形貌、磁性能等进行表征。并进一步以罗丹明B(RhB)染料为模拟污染物,对NH2?Fe3O4@PEG@ZnO复合材料的光催化降解性能进行研究,采用单因素法探究Fe与Zn的原子比(n(Fe)∶n(Zn))、合成温度、表面活性剂种类及用量对NH2—Fe3O4@PEG@ZnO复合材料光催化降解性能的影响。结果表明,n(Fe)∶n(Zn)=1∶15、水热合成温度为180℃制备的NH2—Fe3O4@ZnO复合材料具有良好的光降解性能,0.0500 g NH2—Fe3O4@ZnO复合材料在紫外光照射20 min内对50 mL RhB(1.0×10?5 mol·L?1)溶液降解率为90.36%。而相同条件制备的NH2—Fe3O4@PEG@ZnO复合材料呈微球状,比表面积为11.43 m2·g?1,禁带宽度为2.51 eV,对RhB的光催化降解率可提高至99.36%,循环使用10次后,其对RhB的光催化降解率仍可达96.48%,PEG-400对NH2—Fe3O4@ZnO复合材料的光催化活性具有较大的协同效应。   相似文献   

19.
以Ni(NO32·6H2O为催化剂前躯体,原位催化裂解酚醛树脂制备了碳洋葱、竹节碳和碳纳米管等低维碳纳米结构;用粉体X-射线衍射(XRD)、扫描电镜(SEM)和透射电镜(TEM)等手段对低维碳纳米结构进行了表征。结果表明;当Ni(NO32·6H2O与苯酚物质量比小于0.01时,Ni催化剂易分散,碳纳米管易生成,管径均一、分布稠密;当Ni(NO32·6H2O与苯酚物质量比大于0.04时,Ni催化剂易团聚,碳纳米管管径分布较宽,分布稀疏;当Ni(NO32·6H2O与苯酚物质量比为0.10时,Ni催化剂团聚现象严重,难以生成碳纳米管;提出了碳洋葱、竹节碳和碳纳米管不同碳纳米结构可能的形成机理。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号