首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The effect of thermal annealing in an inert atmosphere (argon) on the structural and thermochromic properties of \(\hbox {MoO}_{3}\) thin films was investigated. \(\hbox {MoO}_{3}\) thin films were deposited by thermal evaporation in vacuum of \(\hbox {MoO}_{3}\) powders. X-ray diffraction patterns of the films showed the presence of the monoclinic Magneli phase \(\hbox {Mo}_{9}\hbox {O}_{26}\) for annealing temperatures above \(250\,{^{\circ }}\hbox {C}\). Absorbance spectra of the films annealed in argon indicated that their thermochromic response increases with the annealing temperature in the analyzed range (23 \({^{\circ }}\hbox {C}\)–300 \({^{\circ }}\hbox {C}\)), a result opposite to the case of thermal annealings in air, for which case the thermochromic response shows a maximum value around 200 \({^{\circ }}\)C–225 \({^{\circ }}\)C and decreases for higher temperatures. These results are explained in terms of a higher density of oxygen vacancies formed upon thermal treatments in inert atmospheres.  相似文献   

2.
The electrical and thermal properties with respect to the crystallization in \(\hbox {V}_{2}\hbox {O}_{5}\) thin films were investigated by measuring the resistance at different temperatures and applied voltages. The changes in the crystal structure of the films at different temperatures were also explored using Raman measurements. The thermal diffusivity of the crystalline \(\hbox {V}_{2}\hbox {O}_{5}\) film was measured by the nanosecond thermoreflectance method. The microstructures of amorphous and crystalline \(\hbox {V}_{2}\hbox {O}_{5}\) were observed by SEM and XRD measurements. The temperature-dependent Raman spectra revealed that a structural phase transition does not occur in the crystalline film. The resistance measurements of an amorphous film indicated semiconducting behavior, whereas the resistance of the crystalline film revealed a substantial change near \(250\,{^{\circ }}\hbox {C}\), and Ohmic behavior was observed above \(380\,{^{\circ }}\hbox {C}\). This result was due to the metal–insulator transition induced by lattice distortion in the crystalline film, for which \(T_{\mathrm{c}}\) was \(260\,{^{\circ }}\hbox {C}\). \(T_{\mathrm{c}}\) of the film decreased from 260 \({^{\circ }}\hbox {C}\) to \(230\,{^{\circ }}\hbox {C}\) with increasing applied voltage from 0 V to 10 V. Furthermore, the thermal diffusivity of the crystalline film was \(1.67\times 10^{-7}\,\hbox {m}^{2}\cdot \hbox {s}^{-1}\) according to the nanosecond thermoreflectance measurements.  相似文献   

3.
We report the effects of annealing in conjunction with \(\hbox {CdCl}_{2}\) treatment on the photovoltaic properties of \(\hbox {CdTe/Zn}_{0.1}\hbox {Cd}_{0.9}\)S thin film solar cells. CdTe layer is subjected to dry \(\hbox {CdCl}_{2}\) treatment by thermal evaporation method and subsequently, heat treated in air using a tube furnace from 400 to \(500{^{\circ }}\hbox {C}\). AFM and XRD results show improved grain size and crystallographic properties of the CdTe film with dry \(\hbox {CdCl}_{2}\) treatment. This recrystallization and grain growth of the CdTe layer upon \(\hbox {CdCl}_{2}\) treatment translates into improved photo-conversion efficiencies of \(\hbox {CdTe/Zn}_{0.1}\hbox {Cd}_{0.9}\)S cell. The results of dry \(\hbox {CdCl}_{2}\) treatment were compared with conventional wet \(\hbox {CdCl}_{2}\) treatment. Photo-conversion efficiency of 5.2% is achieved for dry \(\hbox {CdCl}_{2}\)-treated cells in comparison with 2.4% of wet-treated cell at heat treatment temperature of \(425{^{\circ }}\hbox {C}\).  相似文献   

4.
\(\hbox {SrTiO}_{3}\) and Bi-doped \(\hbox {SrTiO}_{3}\) films were fabricated with different device structures using the sol–gel method for non-volatile memory applications, and their resistance-switching behaviour, endurance and retention characteristics were investigated. \(\hbox {SrTiO}_{3}\) and \(\hbox {Sr}_{0.92}\hbox {Bi}_{0.08}\hbox {TiO}_{3}\) films grown on Si or Pt have the same phase structure, morphologies and grain size; however, the grain size of the \(\hbox {Sr}_{0.92}\hbox {Bi}_{0.08}\hbox {TiO}_{3}\) films grown on Si is slightly larger than those of the \(\hbox {SrTiO}_{3}\) films grown on Si and the \(\hbox {Sr}_{0.92}\hbox {Bi}_{0.08}\hbox {TiO}_{3}\) films grown on Pt. The \(\hbox {SrTiO}_{3}\) or \(\hbox {Sr}_{0.92}\hbox {Bi}_{0.08}\hbox {TiO}_{3}\) films grown on Si or Pt all exhibit bipolar resistive-switching behaviour and follow the same conductive mechanism; however, the \(\hbox {Ag}/\hbox {Sr}_{0.92}\hbox {Bi}_{0.08}\hbox {TiO}_{3}/\hbox {Si}\) device possesses the highest \(R_{\mathrm{HRS}}{/}R_{\mathrm{LRS}}\) of \(10^{5}\) and the best endurance and retention characteristics. The doping of Bi is conducive to enhance the \(R_{\mathrm{HRS}}{/}R_{\mathrm{LRS}}\) of the \(\hbox {SrTiO}_{3}\) films; meanwhile, the Si substrates help improve the endurance and retention characteristics of the \(\hbox {Sr}_{0.92}\hbox {Bi}_{0.08}\hbox {TiO}_{3}\) films.  相似文献   

5.
The \(\hbox {Sr}_{0.88}\hbox {Bi}_{0.12}\hbox {TiO}_{3}/\hbox {SrTi}_{0.92}\hbox {Mg}_{0.08}\hbox {O}_{3}\) (SBTO/STMO) heterostructure films were prepared on \(\hbox {p}^{+}\hbox {-Si}\) substrates by sol–gel spin-coating technique, and the films had good crystallinity and uniform grain distribution. The heterostructure films with a structure of Ag/SBTO/STMO/\(\hbox {p}^{+}\hbox {-Si}\) exhibited a bipolar, remarkable resistance-switching characteristic, and \(R_{\mathrm{HRS}}/R_{\mathrm{LRS}}\,\,{\sim }10^{4}\). More importantly, the heterostructure films showed rectifying characteristic in the low resistance state (LRS), and the rectification ratio can reach \(10^{2 }\) at \(\pm 1\hbox { V}\). The dominant resistive-switching conduction mechanism of high resistance state (HRS) was Ohmic behaviour, and the LRS changed to space charge-limited current (SCLC).  相似文献   

6.
Undoped and Eu-doped \(\hbox {CaSnO}_{3}\) nanopowders were prepared by a facile sol–gel auto-combustion method calcined at \(800{^{\circ }}\hbox {C}\) for 1 h. The samples are found to be well-crystallized pure orthorhombic \(\hbox {CaSnO}_{3}\) structure. Photoluminescence (PL) measurements indicated that the undoped sample exhibits a broad blue emission at about 420–440 nm, which can be recognized from an intrinsic centre or centres in \(\hbox {CaSnO}_{3}\). Eu-doped \(\hbox {CaSnO}_{3}\) showed broad blue emission centred about 434 nm, a weak peak at 465 nm and a sharp intense yellow emission line at 592 nm. The emission situated at 592 nm was assigned to the f–f transition of \(^{5}\hbox {D}_{0}\rightarrow ^{7}\hbox {F}_{1}\) in \(\hbox {Eu}^{3+}\) ions. The afterglow emission and PL decay results in Eu-doped \(\hbox {CaSnO}_{3}\) phosphor, which revealed that there are at least two different traps in this phosphor. From the obtained results, \(\hbox {Eu}^{3+}\)-doped \(\hbox {CaSnO}_{3}\) phosphor could be proposed as a potential white luminescent optical material.  相似文献   

7.
Thin films of optimally doped(001)-oriented \(\hbox {YBa}_{2}\hbox {Cu}_{3}\hbox {O}_{7-\updelta }\) are epitaxially integrated on silicon(001) through growth on a single crystalline \(\hbox {SrTiO}_{3}\) buffer. The former is grown using pulsed-laser deposition and the latter is grown on Si using oxide molecular beam epitaxy. The single crystal nature of the \(\hbox {SrTiO}_{3}\) buffer enables high quality \(\hbox {YBa}_{2}\hbox {Cu}_{3}\hbox {O}_{7-\updelta }\) films exhibiting high transition temperatures to be integrated on Si. For a 30-nm thick \(\hbox {SrTiO}_{3}\) buffer, 50-nm thick \(\hbox {YBa}_{2}\hbox {Cu}_{3}\hbox {O}_{7-\updelta }\) films that exhibit a transition temperature of \(\sim \)93 K, and a narrow transition width (<5 K) are achieved. The integration of single crystalline \(\hbox {YBa}_{2}\hbox {Cu}_{3}\hbox {O}_{7-\updelta }\) on Si(001) paves the way for the potential exploration of cuprate materials in a variety of applications.  相似文献   

8.
In this work, the effect of annealing temperature on the conductivity of solution-combustion-synthesized calcium vanadium oxide (CVO) films was studied. Conductivity was tailored by the appearance of the phases like \(\hbox {CaVO}_{3}\), \(\hbox {CaV}_{2}\hbox {O}_{5}\) and \(\hbox {Ca}_{2}\hbox {V}_{2}\hbox {O}_{7}\) as a function of annealing temperature; \(\hbox {CaVO}_{3}\) and \(\hbox {CaV}_{2}\hbox {O}_{5}\) are responsible for high conductivity, whereas \(\hbox {V}^{5+}\) presence in \(\hbox {Ca}_{2}\hbox {V}_{2}\hbox {O}_{7}\) contributes towards dielectric nature. Evolution of phases of CVO was identified through X-ray diffraction, Raman spectroscopy, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. A detailed conductivity measurement as a function of annealing temperature helps us to identify the decreasing trend of conductivity with increasing temperature up to \(400{^{\circ }}\hbox {C}\); beyond this it behaves like an insulator. There was a stable conductivity while aging the films in ambient for a few days. This study revealed safe application temperature domain of CVO, and a clear correlation of electrical conductivity with the in-depth structural–compositional–morphological study.  相似文献   

9.
The effect of Ba(\(\hbox {Mg}_{1/8}\hbox {Nb}_{3/4})\hbox {O}_{3}\) phase on structure and dielectric properties of \(\hbox {Ba(Mg}_{1/3}\hbox {Nb}_{2/3})\hbox {O}_{3}\) was studied by synthesizing \((1{-}x)\hbox {Ba(Mg}_{1/3}\hbox {Nb}_{2/3})\hbox {O}_{3}{-}x\hbox {Ba}(\hbox {Mg}_{1/8}\hbox {Nb}_{3/4})\hbox {O}_{3}\) (\(x = 0\), 0.005, 0.01 and 0.02) ceramics. Superlattice reflections due to 1:2 ordering appear as low as \(1000^{\circ }\hbox {C}\). \(\hbox {Ba}(\hbox {Mg}_{1/3}\hbox {Nb}_{2/3})\hbox {O}_{3}\) forms solid solution with \(\hbox {Ba}(\hbox {Mg}_{1/8}\hbox {Nb}_{3/4})\hbox {O}_{3}\) for all ‘x’ values studied until \(1350^{\circ }\hbox {C}\). Ordering was confirmed by powder X-ray diffraction pattern, Raman study and HRTEM. Ceramic pucks can be sintered to density \({>}92\%\) of theoretical density. Temperature and frequency-stable dielectric constant and nearly zero dielectric loss (tan \(\delta \)) were observed at low frequencies (20 MHz). The sintered samples exhibit dielectric constant (\(\varepsilon _{\mathrm{r}})\) between 30 and 32, high quality factor between 37000 and 74000 GHz and temperature coefficient of resonant frequency (\(\tau _{\mathrm{f}})\) between 21 and \(24\hbox { ppm }^{\circ }\hbox {C}^{-1}\).  相似文献   

10.
Structural, electronic, mechanical and thermodynamic properties of \(\hbox {Rh}_{3}\hbox {Zr}_{x}\hbox {V}_{1-x}\) and \(\hbox {Rh}_{3}\hbox {Hf}_{x}\hbox {V}_{1-x}\) (\(x = 0\), 0.125, 0.25, 0.75, 0.875 and 1) combinations are investigated by means of first-principles calculations based on the density functional theory within the generalized gradient approximation. Here, \(\hbox {Rh}_{3}\hbox {V}\) is chosen as the parent binary compound and the doping elements are zirconium and hafnium with the above-mentioned concentrations. The calculated lattice parameters and elastic modulus of binary \(\hbox {Rh}_{3}\hbox {Hf}\), \(\hbox {Rh}_{3}\hbox {V}\) and \(\hbox {Rh}_{3}\hbox {Zr}\) are in good agreement with the available experimental and other theoretical results. In this study, the following ternary materials viz., \(\hbox {Rh}_{3}\hbox {Zr}_{0.75}\hbox {V}_{0.25}\), \(\hbox {Rh}_{3}\hbox {Hf}_{0.25}\hbox {V}_{0.75}\) and \(\hbox {Rh}_{3}\hbox {Hf}_{0.75}\hbox {V}_{0.25}\) are found to be brittle/more brittle than the parent binary compound \(\hbox {Rh}_{3}\hbox {V}\), whereas the other ternary combinations, namely \(\hbox {Rh}_{3}\hbox {Zr}_{0.125}\hbox {V}_{0.875}\), \(\hbox {Rh}_{3}\hbox {Zr}_{0.25}\hbox {V}_{0.75}\), \(\hbox {Rh}_{3}\hbox {Zr}_{0.875}\hbox {V}_{0.125}\), \(\hbox {Rh}_{3}\hbox {Hf}_{0.125}\hbox {V}_{0.875}\) and \(\hbox {Rh}_{3}\hbox {Hf}_{0.875}\hbox {V}_{0.125}\) are found to be more ductile than \(\hbox {Rh}_{3}\hbox {V}\). The more brittle ternary combination, namely \(\hbox {Rh}_{3}\hbox {Hf}_{0.75}\hbox {V}_{0.25}\) (\(B = 229.32\,\hbox {GPa}\)) has the maximum Young’s modulus, shear modulus and hardness values; whereas the more ductile ternary \(\hbox {Rh}_{3}\hbox {Zr}_{0.25}\hbox {V}_{0.75}\) combination (\(B = 243.54\,\hbox {GPa}\)) is found to have the least values of Young’s modulus, shear modulus and hardness. The band structure, density of states histograms and charge density plots are drawn and discussed. Computed Debye temperature (\(\theta _{\mathrm{D}}\)), Grüneisen parameter (\(\zeta \)) and melting temperature (\(T_{\mathrm{m}})\) of the parent binary compound \(\hbox {Rh}_{3}\hbox {V}\), the more brittle \(\hbox {Rh}_{3}\hbox {Hf}_{0.75}\hbox {V}_{0.25}\) combination and the more ductile \(\hbox {Rh}_{3}\hbox {Zr}_{0.25}\hbox {V}_{0.75}\) combination are given by (895 K, 1.3491, 2788 K), (790 K, 1.2701, 2736 K) and (698 K, 1.7972, 2529 K), respectively.  相似文献   

11.
Molten nitrate salt is usually employed as heat transfer or energy storage medium in concentrating solar power systems to improve the overall efficiency of thermoelectric conversion. In the present work, the liquidus curves of the \(\hbox {LiNO}_{3}\)\(\hbox {NaNO}_{3}\)\(\hbox {KNO}_{3}\)\(\hbox {Ca}(\hbox {NO}_{3})_{2}\) system is determined by conformal ionic solution theory according to the solid–liquid equilibrium state of the binary mixture. The calculated eutectic temperature of the mixture is \(93.17\,{^{\circ }}\hbox {C}\), which is close to the experimental value of \(93.22\,{^{\circ }}\hbox {C}\) obtained from differential scanning calorimetry (DSC). Visualization observation experiments reveal that the quaternary eutectic mixture begins to partially melt when the temperature reaches \(50\,{^{\circ }}\hbox {C}\), and the degree of melting increases with temperature. The mixture is completely melted at \(\hbox {130}\,{^{\circ }}\hbox {C}\). The observed changes in the dissolved state at different temperatures correlate well with the DSC heat flow curve fluctuations.  相似文献   

12.
Traditional absorption refrigeration such as \(\hbox {H}_{2}\hbox {O}\)–LiBr- and \(\hbox {NH}_{3}\)\(\hbox {H}_{2}\hbox {O}\)-based refrigeration has limited applications because of several issues, including crystallization, corrosion, and large volume. \(\hbox {CO}_{2}\)–ionic liquids (ILs) as new absorption working pairs were investigated in this study. The objective was to use the group contribution equation of state (GC-EOS) method to predict the solubilities of binary systems containing high-pressure \(\hbox {CO}_{2}\)–imidazole bis(trifluoromethanesulfonimide) ILs and to investigate the applicability and accuracy of the GC-EOS model. The results showed that at pressures up to 11.0 MPa and temperatures of 273 K to 400 K, the \(\hbox {CO}_{2}\) solubility in the ILs increased with increasing system pressure but decreased with increasing temperature, and its variation rate was lower at higher pressures or temperatures. Also, \(\hbox {CO}_{2}\) solubility increased in the order of [emim][\(\hbox {Tf}_{2}\hbox {N}\)] < [bmim][\(\hbox {Tf}_{2}\hbox {N}\)] < [hmim][\(\hbox {Tf}_{2}\hbox {N}\)] < [omim][\(\hbox {Tf}_{2}\hbox {N}\)], indicating that longer alkyl chains of identical IL families resulted in higher \(\hbox {CO}_{2 }\) solubility. The model prediction of \(\hbox {CO}_{2}\) solubility in the four different ILs showed reasonable consistency with the corresponding experimental results from the literature; the largest deviation was 5.7 % for \(\hbox {CO}_{2}\)-[emim][\(\hbox {Tf}_{2}\hbox {N}\)]. Therefore, it can be concluded that the GC-EOS model is a promising theoretical solution that can be used to search for suitable \(\hbox {CO}_{2}\)–IL working pairs for absorption refrigeration systems.  相似文献   

13.
The present paper reports the effect of B- and BN-doped \(\hbox {C}_{60}\) as catalysts for lowering the dehydrogenation energy in \(\hbox {MXH}_{4}\) clusters (M = Na and Li, X = Al and B) using density functional calculations. \(\hbox {MXH}_{4}\) interacts strongly with B-doped \(\hbox {C}_{60}\) and weakly with BN-doped \(\hbox {C}_{60}\) in comparison with pure \(\hbox {C}_{60}\) with binding energy 0.56–0.80 and 0.05–0.34 eV, respectively. The hydrogen release energy \((E_{\mathrm{HRE}})\) of \(\hbox {MXH}_{4}\) decreases sharply in the range of 38–49% when adsorbed on B-doped \(\hbox {C}_{60}\); however, with BN-doped \(\hbox {C}_{60}\) the decrease in the \(E_{\mathrm{HRE}}\) varies in the range of 6–20% as compared with pure \(\hbox {MXH}_{4}\) clusters. The hydrogen release energy of second hydrogen atom in \(\hbox {MXH}_{4}\) decreases sharply in the range of 1.7–41% for BN-doped \(\hbox {C}_{60}\) and decreases in the range of 0.2–11.3% for B-doped \(\hbox {C}_{60}\) as compared with pure \(\hbox {MXH}_{4}\) clusters. The results can be explained on the basis of charge transfer within \(\hbox {MXH}_{4}\) cluster and with the doped \(\hbox {C}_{60}\).  相似文献   

14.
Heterostructure \(\hbox {Ba}_{0.7}\hbox {Sr}_{0.3}\hbox {TiO}_{3}\)\(\hbox {Ni}_{0.8}\hbox {Zn}_{0.2}\hbox {Fe}_{2}\hbox {O}_{4}\) composite thin films grown on Pt–\(\hbox {TiO}_{2}\)\(\hbox {SiO}_{2}\)\(\hbox {Si}\) substrate were prepared by chemical solution process, where \(\hbox {Ba}_{0.7}\hbox {Sr}_{0.3}\hbox {TiO}_{3}\) layer grew as top/bottom while \(\hbox {Ni}_{0.8}\hbox {Zn}_{0.2}\hbox {Fe}_{2}\hbox {O}_{4}\) layer grew as bottom/top. Structural characterization by X-ray diffraction and atomic force microscopy showed the similar crystal structure, different lattice parameters, large lattice strain and small grain size in heterostructures, whatever their deposition sequences. Such heterostructures present simultaneously ferromagnetic and ferroelectric responses at room temperature. In particular, an exceptionally large saturation magnetization was observed in one heterostructures film. The growth sequences of \(\hbox {Ba}_{0.7}\hbox {Sr}_{0.3}\hbox {TiO}_{3}\) and \(\hbox {Ni}_{0.8}\hbox {Zn}_{0.2}\hbox {Fe}_{2}\hbox {O}_{4}\) layers on the substrate remarkably affect the magnetic properties of the composite thin films at room temperature.  相似文献   

15.
\(\hbox {V}_{2}\hbox {O}_{5}\) nanomaterials with rough surface were synthesized using commercial \(\hbox {V}_{2}\hbox {O}_{5}\), ethanol (EtOH) and \(\hbox {H}_{2}\hbox {O}\) as the starting materials by a simple hydrothermal route and combination of calcination. The electrochemical properties of \(\hbox {V}_{2}\hbox {O}_{5}\) nanomaterials as electrodes in a supercapacitor device were measured using cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) method. \(\hbox {V}_{2}\hbox {O}_{5}\) nanomaterials exhibit the specific capacitance of 423 F \(\hbox {g}^{-1}\) at the current density of 0.5 A \(\hbox {g}^{-1}\) and retain 327 F \(\hbox {g}^{-1}\) even at the high current density of 10 A \(\hbox {g}^{-1}\). The influence of the ratio of \(\hbox {EtOH/H}_{2}\hbox {O}\), the calcined time and temperature on the morphology, purity and electrochemical property of the products is discussed in detail. The results revealed that the ratio of \(\hbox {EtOH}\hbox {/}\hbox {H}_{2}\hbox {O}= 10\hbox {/}25\) and calcination at \(400{^{\circ }}\hbox {C}\) for 2–4 h are favourable for preparing \(\hbox {V}_{2}\hbox {O}_{5}\) nanomaterials and they exhibited the best electrochemical property. The novel morphology and high specific surface area are the main factors that contribute to high electrochemical performance of \(\hbox {V}_{2}\hbox {O}_{5}\) nanomaterials during the charge–discharge processes. It turns out that \(\hbox {V}_{2}\hbox {O}_{5}\) nanomaterials with rough surface is an ideal material for supercapacitor electrode in the present work.  相似文献   

16.
Emission of gas and \(\hbox {Al}_{2}\hbox {O}_{3}\) smoke within the deflagration of \(\hbox {H}_{2}{-}\hbox {O}_{2}\)–{\(\hbox {N}_{2}{-}\hbox {CO}_{2}\)}–Al particles has been studied in a closed combustion chamber at pressures of up to 18 bar and at gas temperatures of up to 3700 K. Measurements of radiance intensity were taken using a five wavelength pyrometer (0.660 \(\upmu \hbox {m}\), 0.850 \(\upmu \hbox {m}\), 1.083 \(\upmu \hbox {m}\), 1.260 \(\upmu \hbox {m}\), 1.481 \(\upmu \hbox {m}\)) and a grating spectrometer in the range (4.10 \(\upmu \hbox {m}\) to 4.30 \(\upmu \hbox {m}\)). In order to characterize the aluminum oxide smoke size and temperature, an inversion method has been developed based on the radiation transfer equation and using pyrometer measurements and thermochemical calculations of \(\hbox {Al}_{2}\hbox {O}_{3}\) smoke volume fractions. Temperatures in combustion gas have been determined using a method based on the assumed blackbody head of the 4.26 \(\upmu \hbox {m}\) \(\hbox {CO}_{2}\) emission line and on its spectral shift with pressure and temperature. For validation purpose, this method has been applied to measurements obtained when calibrated alumina particles are injected in a combustion chamber prior to gaseous deflagrations. This mathematical inversion method was developed to investigate explosive fireballs.  相似文献   

17.
The present work deals with the development of a new ternary composite, \(\hbox {Ag}_{2}\hbox {Se}\)\(\hbox {G}\)\(\hbox {TiO}_{2}\), using ultrasonic techniques as well as X-ray diffraction (XRD), scanning electron microscopy (SEM), high transmission electron microscopy (HTEM), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy and UV–Vis diffuse reflectance spectra (DRS) analyses. The photocatalytic potential of nanocomposites is examined for \(\hbox {CO}_{2}\) reduction to methanol under ultraviolet (UV) and visible light irradiation. \(\hbox {Ag}_{2}\hbox {Se}\)\(\hbox {TiO}_{2}\) with an optimum loading graphene of 10 wt% exhibited the maximum photoactivity, obtaining a total \(\hbox {CH}_{3}\hbox {OH}\) yield of 3.52 \(\upmu \hbox {mol}\,\hbox {g}^{-1}\,\hbox {h}^{-1}\) after 48 h. This outstanding photoreduction activity is due to the positive synergistic relation between \(\hbox {Ag}_{2}\hbox {Se}\) and graphene components in our heterogeneous system.  相似文献   

18.
A theoretical study of NO adsorption on \(\hbox {Cu}_{m}\hbox {Co}_{n}\) (2 \(\le m+n \le \) 7) clusters was carried out using a density functional method. Generally, NO is absorbed at the top site via the N atom, except in \(\hbox {Cu}_{3}\hbox {NO}\) and \(\hbox {Cu}_{5}\hbox {NO}\) clusters, where NO is located at the bridge site. \(\hbox {Co}_{2}\hbox {NO}\), \(\hbox {Co}_{3}\hbox {NO}\), \(\hbox {Cu}_{2}\hbox {Co}_{2}\hbox {NO}\), \(\hbox {Co}_{5}\hbox {NO}\), \(\hbox {Cu}_{2}\hbox {Co}_{4}\hbox {NO}\) and \(\hbox {Cu}_{6}\hbox {CoNO}\) clusters have larger adsorption energies, indicating that NO of these clusters are more easily adsorbed. After adsorption, N–O bond is weakened and the activity is enhanced as a result of vibration frequency of N–O bond getting lower than that of a single NO molecule. \(\hbox {Cu}_{2}\hbox {CoNO}\), \(\hbox {Cu}_{3}\hbox {CoNO}\), \(\hbox {Cu}_{2}\hbox {Co}_{2}\hbox {NO}\), \(\hbox {Cu}_{3}\hbox {Co}_{3}\hbox {NO}\) and \(\hbox {Cu}\hbox {Co}_{5}\hbox {NO}\) clusters are more stable than their neighbours, while CuCoNO, \(\hbox {Co}_{3}\hbox {NO}\), \(\hbox {Cu}_{3}\hbox {CoNO}\), \(\hbox {Cu}_{2}\hbox {Co}_{3}\hbox {NO}\), \(\hbox {Cu}_{3}\hbox {Co}_{3}\hbox {NO}\) and \(\hbox {Cu}_{6}\)CoNO clusters display stronger chemical stability. Magnetic and electronic properties are also discussed. The magnetic moment is affected by charge transfer and the spd hybridization.  相似文献   

19.
A novel, highly visible light active N-doped \(\hbox {WO}_{3}\) (\(\hbox {N}\)-\(\hbox {WO}_{3})\) is successfully synthesized via thermal decomposition of peroxotungstic acid–urea complex. The photocatalytic activity of \(\hbox {N}\)-\(\hbox {WO}_{3}\) is evaluated for the degradation of amaranth (AM) dye under visible and UVA light along with the role of reactive species, which has not yet been studied for \(\hbox {N}\)-\(\hbox {WO}_{3}\) photocatalysts. Doping of N into substitutional and interstitial sites of \(\hbox {WO}_{3}\) is confirmed by X-ray photoelectron spectroscopy and X-ray absorption near-edge spectroscopy. At a pH of 7, 1 g \(\hbox {l}^{-1}\) of \(\hbox {N}\)-\(\hbox {WO}_{3}\) can completely degrade \(10\,\hbox {mg } \hbox {l}^{-1}\) of AM within 1 h under visible and UVA light. For the degradation of AM by \(\hbox {N}\)-\(\hbox {WO}_{3}\) under visible and UVA light, \(\hbox {h}^{+}\) is found to be the main reactive species, while \(\cdot \hbox {OH}\) contributes to a lesser extent. On the contrary, \(^{1}\hbox {O}_{2}, \cdot \hbox {O}_{2}^{-}\) and \(\hbox {e}^{-}\) show negligible roles. The crucial role of \(\hbox {h}^{+}\) indicates effective suppression of electron–hole recombination after N doping. Dye sensitization and oxidation by reactive species are found to be the major pathway for the degradation of AM under visible and UVA light, respectively.  相似文献   

20.
In nuclear reactors, the performance of uranium dioxide \((\hbox {UO}_{2})\) fuel is strongly dependent on the thermal conductivity, which directly affects the fuel pellet temperature, the fission gas release and the fuel rod mechanical behavior during reactor operation. The use of additives to improve \(\hbox {UO}_{2}\) fuel performance has been investigated, and beryllium oxide (BeO) appears as a suitable additive because of its high thermal conductivity and excellent chemical compatibility with \(\hbox {UO}_{2}\). In this paper, \(\hbox {UO}_{2}\)–BeO pellets were manufactured by mechanical mixing, pressing and sintering processes varying the BeO contents and compaction pressures. Pellets with BeO contents of 2 wt%, 3 wt%, 5 wt% and 7 wt% BeO were pressed at 400 MPa, 500 MPa and 600 MPa. The laser flash method was applied to determine the thermal diffusivity, and the results showed that the thermal diffusivity tends to increase with BeO content. Comparing thermal diffusivity results of \(\hbox {UO}_{2}\) with \(\hbox {UO}_{2}\)–BeO pellets, it was observed that there was an increase in thermal diffusivity of at least 18 % for the \(\hbox {UO}_{2}\)-2 wt% BeO pellet pressed at 400 MPa. The maximum relative expanded uncertainty (coverage factor k = 2) of the thermal diffusivity measurements was estimated to be 9 %.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号