首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Conjugated linoleic acid (CLA)‐enriched triacylglycerol (TAG) of 90 wt% was successfully synthesized in 10 h by direct esterification of glycerol and CLA using an immobilized lipase from Candida antarctica under vacuum. The best operating conditions for the synthesis of TAG were investigated according to the three parameters of temperature, enzyme loading, and vacuum. The synthesis of TAG increased with increasing temperature but it did not significantly change above 60°C (p>0.05). The increase of enzyme loading lead to an enhanced conversion of TAG, but enzyme loading of more than 10% (based on the total weight of the substrates) was not effective. Moreover, when vacuum increased, the conversion of TAG increased, but the conversion rate decreased when the vacuum level was too high. The best combination of temperature, enzyme loading, and vacuum level were 60°C, 10% of the total weight of the substrates, and 0.4 kPa, respectively. During the initial 6 h of reaction, Candida antarctica lipase had more selectivity for 10t,12c‐CLA than 9c,11t‐CLA onto the glycerol backbone, and a preference for the incorporation at the sn‐1,3 positions of glycerol rather than at the sn‐2 position.  相似文献   

2.
Commercial native lipase A from Candida antarctica was used to produce alkyl esters through the alcoholysis of (waste) fats with 2‐ethyl‐1‐hexanol. The process was carried out in batch stirred tank reactors (from 100 mL up to 3000 L). The content of alkyl esters in reaction mixtures was determined by gradient HPLC using an evaporative light scattering detector and the reaction progress was controlled by determining the ratio of the palmitic acid ester peak area to the oleic acid ester peak area in HPLC chromatograms. The results show that alcoholysis is the favoured reaction in presence of excess water and water‐insoluble alcohols in comparison with hydrolysis (fatty acid content <5%). The optimum amount of water for the alcoholysis was found to be 80–100% of the amount of fat. In the presence of low quantities of water both alcoholysis and hydrolysis are slow. Conversion rate increases with increasing temperature to 65–70 °C. Based on these results a large‐scale test to produce 3000 L of alkyl ester (to be used as lubricant coolant) was carried out. The experiments have proved that alcoholysis is completed after about 7–10 h depending on temperature.  相似文献   

3.
DNA family shuffling was used to create chimeric lipase B proteins with improved activity toward the hydrolysis of diethyl 3-(3',4'-dichlorophenyl)glutarate (DDG). Three homologous lipases from Candida antarctica ATCC 32657, Hyphozyma sp. CBS 648.91 and Crytococcus tsukubaensis ATCC 24555 were cloned and shuffled to generate a diverse gene library. A high-throughput screening assay was developed and used successfully to identify chimeric lipase B proteins having a 20-fold higher activity toward DDG than lipase B from C.antarctica ATCC 32657 and a 13-fold higher activity than the most active parent derived from C.tsukubaensis ATCC 24555. In addition, the stability characteristics of several highly active chimeric proteins were also improved as a result of family shuffling. For example, the half-life at 45 degrees C and melting point (T(m)) of one chimera exceeded those of lipase B from C.antarctica ATCC 32657 by 11-fold and 6.4 degrees C, respectively, which closely approached the stability characteristics of the most thermostable parent derived from Hyphozyma sp. CBS 648.91.  相似文献   

4.
The engineering of lipase B from Candida antarctica (CALB) by circular permutation has yielded over sixty hydrolase variants, and several show significantly improved catalytic performance. Here we report a detailed characterization of ten selected enzyme variants by kinetic and spectroscopic methods to further elucidate the impact of circular permutation on the structure and function of CALB. Our experiments identify lipase variants with up to 175-fold enhanced k(cat)/K(M) values over wild-type. In addition, circular permutation does not change the enzymes' enantiopreference and preserves or even improves their enantioselectivity compared to that of the wild-type enzyme. Finally, our spectroscopic analyses suggest that the structural effects of circular permutation on CALB are mostly local, concentrating on regions near the native and new protein termini. The observed changes in secondary structure and protein thermostability vary among enzyme variants but directly correlate with the locations of the new termini, a first step towards a predictive framework.  相似文献   

5.
6.
The selectivity of acetylation of delta-functionalized secondary alcohols catalyzed by Candida antarctica lipase B has been examined by molecular dynamics. The results from the simulation show that a delta-alcohol functionality forms a hydrogen bond with the carbonyl group of Thr 40. This interaction stabilizes the tetrahedral intermediate and thus leads to selective acetylation of the R enantiomer. A stabilizing interaction of the delta-(R)-acetoxy group with the peptide NH of alanine 282 was also observed. No stabilizing interaction could be found for the delta-keto functionality, and it is proposed that this is the reason for the experimentally observed decrease in enantioselectivity. From these results, it was hypothesized that the enantioselectivity could be restored by mutating the alanine in position 281 for serine. The mutation was made experimentally, and the results show that the E value increased from 9 to 120.  相似文献   

7.
A lipase preparation developed from Candida sp. 99‐125 was used for fatty acid alkyl ester synthesis by both enzymatic esterification of fatty acids, and transesterification of oils and fats. The lipase preparation was chosen based on screening of lipases from commercial sources as well as those produced in the laboratory. The effects of enzyme dosage, solvent types, water absorbent additions, inhibition of short‐chain alcohols, alcohol and acid types, molar ratio of substrates, and reusability of the lipase preparation in esterification were studied. Degree of esterification between oleic acid and methanol under optimal conditions reached 92%. Purity of the methyl ester after washing with water and distillation was 98%. Half‐life of the lipase preparation was calculated to be approximately 340 h. For transesterification of rapeseed oil with the same lipase preparation, the amount of methanol and mode of methanol addition to the reaction were also conducted. Transesterification of the oil with stepwise methanol addition reached 83% after 36 h reaction time.  相似文献   

8.
The surfactant, ethyl 6-O-decanoyl glucoside, was synthesized in microemulsion systems by lipase catalysis. The microemulsions were based on the two substrates for the reaction, ethyl glucoside and fatty acid, and either the sodium salt of the fatty acid or the glucoside ester was used as surfactant. The lipase used was component B from Candida antarctica. Reduced pressure was employed to eliminate the water of condensation. The reaction yield was good, with conversion of fatty acid and ethyl glucoside reaching 77 and 96%, respectively.  相似文献   

9.
Two distinct lipase forms were obtained from Candida rugosa lipase by Phenyl Sepharose hydrophobic interaction and DEAE Sepharose ion exchange chromatography, L1 at 45% yield and L2 at 4·7% yield. Both purified lipases were able to catalyse esterification of 1-butanol and oleic acid and trans-esterification of 2-ethyl-1-hexanol and rapeseed oil. Lipase L1 gave a 98% yield for esterification over 12 h and a 99% conversion of rapeseed oil for trans-esterification over 24 h. The minor fraction L2 gave a 97% yield for esterification over 30 h and only a 79% conversion for trans-esterification over 24 h. The superiority of fraction L1, especially in trans-esterification, could be clearly shown by reversed phased HPLC analysis. Sodium deoxycholate treatment of the purified main lipase L1 considerably improved the initial rate in both esterification and trans-esterification.  相似文献   

10.
Biodiesel derived from vegetable oils has drawn considerable attention with increasing environmental consciousness. We attempted continuous methanolysis of vegetable oil by an enzymatic process. Immobilized Candida antarctica lipase was found to be the most effective for the methanolysis among lipases tested. The enzyme was inactivated by shaking in a mixture containing more than 1.5 molar equivalents of methanol against the oil. To fully convert the oil to its corresponding methyl esters, at least 3 molar equivalents of methanol are needed. Thus, the reaction was conducted by adding methanol stepwise to avoid lipase inactivation. The first step of the reaction was conducted at 30°C for 10 h in a mixture of oil/methanol (1:1, mol/mol) and 4% immobilized lipase with shaking at 130 oscillations/min. After more than 95% methanol was consumed in ester formation, a second molar equivalent of methanol was added and the reaction continued for 14 h. The third molar equivalent of methanol was finally added and the reaction continued for 24 h (total reaction time, 48 h). This three-step process converted 98.4% of the oil to its corresponding methyl esters. To investigate the stability of the lipase, the three-step methanolysis process was repeated by transferring the immobilized lipase to a fresh substrate mixture. As a result, more than 95% of the ester conversion was maintained even after 50 cycles of the reaction (100 d).  相似文献   

11.
BACKGROUND: Enzymatic esterification of phytosterols with fatty acids from butterfat in equimolecular conditions to produce phytosteryl esters was performed in solvent‐free medium. Commercial and immobilized Candida rugosa lipases were used as biocatalysts for the reaction. RESULTS: By this methodology, under simple and mild reaction conditions (without solvents, 50 °C and short reaction times), 94% and 99% (w/w) of phystosteroyl esters were obtained in 48 h and 9 h with the commercial and the immobilized lipase, respectively. The effects of temperature, fatty acid specificity, enzyme amount and residual activity of each lipase were also evaluated. CONCLUSIONS: The phytosteryl esters from butterfat produced in this study are expected to have lower melting point, improved oil and fat solubility and bioavailability compared to that of their corresponding free phytosterols. Copyright © 2008 Society of Chemical Industry  相似文献   

12.
Candida antarctica lipase is inactivated in a mixture of vegetable oil and more than 1∶2 molar equivalent of methanol against the total fatty acids. We have revealed that the inactivation was eliminated by three successive additions of 1∶3 molar equivalent of methanol and have developed a three-step methanolysis by which over 95% of the oil triacylglycerols (TAG) were converted to their corresponding methyl esters (ME). In this study, the lipase was not inactivated even though 2∶3 molar equivalent of methanol was present in a mixture of acylglycerols (AG) and 33% ME (AG/ME33). This finding led to a two-step methanolysis of the oil TAG: The first-step was conducted at 30°C for 12 h with shaking in a mixture of the oil, 1∶3 molar equivalent of methanol, and 4% immobilized lipase; the second-step reaction was done for 24 h after adding 2∶3 molar equivalent of methanol (36 h in total). The two-step methanolysis achieved more than 95% of conversion. When two-step reaction was repeated by transferring the immobilized lipase to a fresh substrate mixture, the enzyme could be used 70 cycles (105 d) without any decrease in the conversion. From the viewpoint of the industrial production of biodiesel fuel production, the two-step reaction was conducted using a reactor with impeller. However, the enzyme carrier was easily destroyed, and the lipase could be used only several times. Thus, we attempted flow reaction using a column packed with immobilized Candida lipase. Because the lipase packed in the column was drastically inactivated by feeding a mixture of AG/ME33 and 2∶3 molar equivalent of methanol, three-step flow reaction was performed using three columns packed with 3.0 g immobilized lipase. A mixture of vegetable oil and 1∶3 molar equivalent of methanol was fed into the first column at a constant flow rate of 6.0 mL/h. The eluate and 1∶3 molar equivalent of methanol were mixed and then fed into the second column at the same flow rate. The final step reaction was done by feeding a mixture of eluate from the second column and 1∶3 molar equivalent of methanol at the same flow rate. The ME content in the final-step eluate reached 93%, and the lipase could be used for 100 d without any decrease in the conversion.  相似文献   

13.
A number of model structures of the CalA suggested by comparative modeling were tested by site-directed mutagenesis. Enzyme variants were created where amino acids predicted to play key roles for the lipase activity in the different models were replaced by an inert amino acid (alanine). The results from activity measurements of the overproduced and purified mutant enzymes indicate a structure where the active site consists of amino acid residues Ser184, His366, and Asp334 and in which there is no lid. This model can be used for future targeted modifications of the enzyme to obtain new substrate acceptance, better thermostability, and higher enantioselectivity.  相似文献   

14.
Chiral intermediates S-(+)-2-pentanol and S-(+)-2-heptanol were prepared by a lipase-catalyzed enzymatic resolution proces. Among various lipases evaluated for the stereoselective acylation of racemic alcohols, lipase B from Candida antarctica catalyzed the acylation of the undesired enantiomer of racemic alcohols leaving the desired S-(+)-alcohols unreacted. A reaction yield of 43–45% and an enantiomeric excess (e.e.) of >99% were obtained for S-(+)-2-pentanol or S-(+)-2-heptanol when the reaction was carried out using vinyl acetate or succnic anhydride as acylating agent. In an alternative process, an enantioselective hydrolysis of 2-pentyl acetate was demonstrated using lipase B giving S-(+)-2-pentyl acetate and R-(−)-2-pentanol. A reaction yield of 45% and an e.e. of 98.6% were obtained for S-(+)-2-pentyl acetate. This work was presented at the Biocatalysis Symposium in April 2000, held at the 91st Annual Meeting and Expo of the American Oil Chemists' Society, San Diego, CA.  相似文献   

15.
Microbial lipase-catalyzed hydrolysis, esterification, and alcoholysis reactions were carried out on acid oils of commerce such as coconut, soybean, mustard, sunflower, and rice bran for the purpose of making fatty acids and various monohydric alcohol esters of fatty acids of the acid oils. Neutral glycerides of the acid oils were hydrolyzed byCanadida cylindracea lipase almost completely within 48 h. Acid oils were converted into fatty acid esters of short- and long-chain alcohols like C4, C8, C10, C12, C16, and C18 in high yields by simultaneous esterification and alcoholysis reactions withMucor miehei lipase as catalyst. Acid oils of commerce can be utilized as raw materials in making fatty acids and fatty acid esters using lipase-catalyzed methodologies.  相似文献   

16.
A water tunnel in Candida antarctica lipase B that provides the active site with substrate water is hypothesized. A small, focused library created in order to prevent water from entering the active site through the tunnel was screened for increased transacylation over hydrolysis activity. A single mutant, S47L, in which the inner part of the tunnel was blocked, catalysed the transacylation of vinyl butyrate to 20 mM butanol 14 times faster than hydrolysis. The single mutant Q46A, which has a more open outer end of the tunnel, showed an increased hydrolysis rate and a decreased hydrolysis to transacylation ratio compared to the wild‐type lipase. Mutants with a blocked tunnel could be very useful in applications in which hydrolysis is unwanted, such as the acylation of highly hydrophilic compounds in the presence of water.  相似文献   

17.
Monomethoxypolyethylene glycols (PEG) of molecular masses 1900 and 5000 were activated using p-nitrophenyl chloroformate to form PEG–nitrophenyl carbonates (activated PEG) with high yield (96–98%). The activated PEG was covalently attached to Candida rugosa lipase. Increasing the molar ratio of activated PEG to the enzyme increased the degree of lipase modification. These modified lipases exhibited specific ester synthesis activities on organic solvents compared with native lipase. The degree of activity enhancement depended on the size of activated PEG used and the degree of modification of the enzyme. Maximal activity was attained after exhaustive of modification. The effects of different solvents, reaction temperature, and fatty acids on the esterification activity and the stability of the modified enzyme were investigated. The optimum esterification temperature (40° C) and preference of fatty acids as acyl donors of the modified lipase were very similar to those of the native enzyme. The modified lipase exhibited higher activity non-polar solvents than in polar solvents, and showed higher temperature, solvent and storage stability then the native lipase.  相似文献   

18.
Acid oil is a by-product in the neutralization step of vegetable oil refining and is an alternative source of biodiesel fuel. A model substrate of acid oil, which is composed of TAG and FFA, was used in experiments on the conversion to FAME by immobilized Candida antarctica lipase. FFA in the mixture of TAG/FFA were efficiently esterified with methanol (MeOH), but the water generated by the esterification significantly inhibited methanolysis of TAG. We thus attempted to convert a mixture of TAG/FFA to FAME by a two-step process comprising methyl esterification of FFA and methanolysis of TAG by immobilized C. antarctica lipase. The first reaction was conducted at 30°C in a mixture of TAG/FFA (1∶1, wt/wt) and 10 wt% MeOH using 0.5 wt% immobilized lipase, resulting in efficient esterification of FFA. The reaction mixture after 24 h was composed of 49.1 wt% TAG, 1.3 wt% FFA, 49.1 wt% FAME, and negligible amounts of DAG and MAG (<0.5 wt%). The reaction mixture was then dehydrated and used as a substrate for the second reaction, which was conducted at 30°C in a solution of the dehydrated mixture and 5.5 wt% MeOH using 6 wt% immobilized lipase. The activity of the lipase increased gradually when the reaction was repeated by transferring the enzyme to a fresh substrate mixture. The activity reached a maximum after 6 cycles, and the content of FAME achieved was >98.5 wt% after a 24-h reaction. The immobilized lipase was very stable in the first-and second-step reactions and could be used for >100 d without significant loss of activity.  相似文献   

19.
氢化葵花油脂肪酸蔗糖酯的合成   总被引:3,自引:0,他引:3  
以氢化葵花油为原料 ,采用两步法合成了氢化葵花油脂肪酸蔗糖酯。探讨了反应温度、时间、压力、催化剂用量、助熔剂等对蔗糖酯收率的影响规律。结果表明 :当助熔剂和催化剂分别为 30 %和 2 .1%时 ,在 15 0℃下反应 6h ,产物收率达 4 5 %以上。  相似文献   

20.
The lipase B from Candida antarctica was subjected to directed evolution suggested by its structure. Mutants of the lipase show significantly increased activity and enantioselectivity toward profen esters compared to the wild type, especially for flurbiprofen ester (ee = 93%, E = 37) and ketoprofen ester (ee = 99%, E > 200).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号