首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
近年来, 纳米铁颗粒(纳米零价铁)因其优异的催化/还原性能, 并且价廉、环境友好, 已成为主要的环境修复材料之一。目前, 纳米铁颗粒主要用于水体修复, 如: 重金属离子去除、有机物污染物降解和无机阴离子催化还原等。纳米铁颗粒易团聚和结构单一等问题会导致其活性低、稳定性差和去除种类单一。为了克服上述问题, 迫切需要研究纳米铁颗粒的界面设计。本文重点阐述纳米铁颗粒及其复合材料的可控制备、界面设计、在重金属去除和硝酸根去除转化中的应用以及在环境修复中的未来发展方向。  相似文献   

2.
零价铁材料作为近年来受到广泛关注和研究的环境原位修复介质,主要得益于自身的一些优势:(1)原料价廉易得,铁在自然界中广泛存在,含量占地壳元素的4.75%,丰富的储存量有利于降低其使用成本;(2)铁化学性质活泼,还原电势高,能与多种污染物发生反应,将其转化到无毒或低毒状态;(3)铁是一种环境友好的修复介质,不易造成二次污染等问题。此外,铁材料还具有较强的磁性,有利于分离回收。然而普通的零价铁颗粒比表面积相对较小,在一定程度上会影响零价铁的使用效果,尤其是去除速率较慢,同时较大的尺寸也使得零价铁材料不适用于土壤修复等对材料渗透性有一定要求的应用环境。为解决这一问题,纳米零价铁材料成为研究热点,其极大的比表面积可使材料反应速率提高到普通铁粉的10~100倍,反应活性极佳,且其颗粒粒径小、渗透性和流动性强,可通过注射的方式进入到地下污染体系中,能实现对土壤和地下水的污染修复,在各种污染环境的原位修复中有着广阔的应用前景。纳米零价铁的制备方法较多,主要可分为物理法(高能机械球磨法、物理气相冷凝法、溅射法和等离子体法等)和化学法(液相化学还原法、固相化学还原法、溶剂热法、气相化学反应法、电沉积法等)两大类。然而纳米零价铁材料性质过于活泼、表面能量高,且磁性较强又会导致其在使用中发生团聚、钝化等问题,严重降低电子效率,限制能效的充分发挥和使用寿命。为此,在纳米零价铁材料基础上进行优化改性是该领域的目前主要发展方向。本文将目前最常见的纳米零价铁优化体系归纳为三类:(1)纳米零价铁稳定化体系,又包括物理负载稳定化和表面化学改性稳定化两种;(2)纳米零价铁包埋体系,其中以生物材料固定化包埋最为常见;(3)纳米零价铁复合体系,例如铁/碳复合纳米材料、纳米双金属复合材料等。本文总结了各体系的特点和相应的制备技术,重点阐述了纳米零价铁优化体系在重金属、有机氯等污染环境中的最新应用进展,揭示了其修复机理和影响能效的因素。进一步提高纳米零价铁优化体系的使用效率、延长使用寿命、降低成本以及拓宽其应用领域,将是该领域未来的主要研究目标。  相似文献   

3.
地下水和地表水中的硝酸盐污染成为一个日益严重的环境问题,通过经济有效的办法对硝酸盐污染进行控制或处理,甚至实现完全无害化,是非常必要且迫切的。纳米零价铁作为一种典型的工程纳米材料,在硝酸盐污染环境修复中有巨大的应用潜力。以纳米零价铁技术在硝酸根还原中的应用发展作为依据,该领域当前主要的研究工作集中于:(1)通过对纳米零价铁颗粒合成方法的探索和改进,提高其对高浓度硝酸盐废水的耐冲击能力,或与其他修复处理技术联用,增强其在原位修复中的适用性等;(2)研究环境条件(包括反应温度、溶解氧浓度、溶液初始pH,以及环境中其他竞争离子等)对纳米零价铁还原硝酸盐的影响规律,为该技术的工业推广提供理论支撑。然而,总结这些研究工作后发现该技术在向实用化进程中仍存在一些难点问题,尤其是零价铁技术使用寿命较短,硝酸根在体系内传质和吸附受限,产物(氮气)选择性低等。为此,在纳米零价铁材料的基础上,通过对其进行功能化改性,进而合成纳米铁基复合材料,作为更先进的技术替代。本文从负载型、双金属型、表面改性型几个方面对纳米铁基复合材料进行了归纳整理,重点阐述了不同复合体系在水中硝酸盐污染去除中展示出的优异于纯纳米零价铁...  相似文献   

4.
纳米零价铁的改性及其应用研究进展   总被引:2,自引:0,他引:2  
铁化学性质活泼,来源丰富,尤其纳米零价铁材料以其尺度小、表面效应大、吸附能力强等特点,近年来在重金属废水处理和土壤修复方面显示出了众多的优势,被看作一种有着广阔应用前景的新材料。但纳米零价铁因其易氧化、易团聚的特点,在实际应用中受到一定限制,因此一般利用表面修饰法对无机纳米颗粒的表面进行改性处理,通过改变颗粒表面物理化学性质,如表面能、组成、结构、官能团、光性、电性及吸附性能等,达到颗粒均匀稳定分散于体系中的目的。综述了目前纳米零价铁的改性研究进展,包括改性材料种类、改性方法、改性效果等,同时对改性纳米铁材料在应用中存在的问题和研究方向提出了建议。  相似文献   

5.
随着核电的发展, 放射性污染物流入环境, 污染水土资源。纳米零价铁(nZVI)材料因还原性强、去除效率高等优势, 被广泛应用于水资源污染修复。本研究以海藻酸钠(SA)为碳源, 采用一步碳热还原法制备碳载零价铁(Fe-CB)材料, 并将其用于水溶液中放射性核素U(Ⅵ)的去除。采用微观光谱和宏观实验研究Fe-CB对U(Ⅵ)的吸附性能和作用机理。研究发现Fe-CB具有丰富的官能团(如-OH和-COOH)及较高的比表面积, 弥补了纳米零价铁(nZVI)分散性差和去除效果低的不足。在298 K时, Fe-CB对U(Ⅵ)的吸附去除在3 h内达到平衡, 最大吸附量为77.3 mg·g -1, 是能够自发进行的化学吸附。X射线光电子能谱分析仪(XPS)分析发现Fe-CB对U(Ⅵ)的去除主要是通过吸附和还原的协同作用来实现的, 吸附过程是U(Ⅵ)与Fe-CB发生表面络合, 还原过程是通过零价铁的还原性将U(Ⅵ)还原成U(Ⅳ)。研究结果表明Fe-CB材料可作为优良的吸附剂, 在环境污染治理领域具有良好的应用前景。  相似文献   

6.
纳米零价铁材料(NZVI)被广泛用于环境中放射性核素U(VI)的去除, 但是单纯的NZVI存在稳定性差、去除效果差等不足。本研究结合表面钝化技术与负载技术制备得到Ca-Mg-Al水滑石负载的硫化纳米零价铁材料(CMAL-SNZVI), 并将其用于U(VI)的高效去除。结合宏观试验与光谱分析表征得到的结果表明, CMAL-SNZVI材料具有出色的理化性质与较高的活性, 对水溶液中U(VI)的去除具有优良的效果, 在2 h内可以达到反应平衡, 且最大吸附量可达175.7 mg·g -1。CMAL-SNZVI对U(VI)的去除主要是由吸附过程与氧化还原反应相结合的方式: 吸附过程中U(VI)与材料中的CMAL基底、SNZVI的表层通过内层表面络合作用结合; 还原过程中材料的NZVI内核将U(VI)还原成低毒难溶的U(IV)后去除。CMAL-SNZVI可为NZVI材料的改性方法提供新的研究方向, 同时, CMAL-SNZVI在污染物去除方面表现优异, 可以作为出色的环境修复材料。  相似文献   

7.
为研究液相还原法制备的纳米零价铁去除Pb~(2+)的机理,在液相还原法的基础上加入有机高分子材料,制备纳米零价铁;利用扫描电镜(SEM)和X射线衍射(XRD)对其进行表征;研究不同时间时离子初始浓度和溶液初始p H值对纳米零价铁去除Pb~(2+)的影响。结果表明:纳米零价铁对Pb~(2+)的去除在120 min内基本达到平衡,当Pb~(2+)初始浓度为50、100 mg/L、纳米零价铁添加量为1 g/L时,Pb~(2+)去除率达99%以上;p H值从2.0增大至3.0时,Pb~(2+)的去除率从41.47%增大至73.58%;p H值从3.0增大至4.0时,Pb~(2+)去除率从73.58%增大至92.62%;动力学拟合结果表明,纳米零价铁去除Pb~(2+)的过程符合准二级动力学模型;纳米零价铁去除Pb~(2+)的机制主要是氧化还原和共沉淀。  相似文献   

8.
熊兆锟  张恒  刘杨  周鹏  何传书  黄荣夫  杜烨  赖波 《材料导报》2021,35(21):21012-21021
零价铁(ZVI)具有还原电位低、可定向还原毒性基团、价廉易得、环境友好等特征,已广泛应用于一般工业废水的预处理.但零价铁在使用过程中存在pH适用范围窄、易生成钝化膜、电子利用率低等问题.以零价铁为核心的高级氧化技术逐渐成为国内外学者的研究热点.零价铁与氧化剂的联用不仅显著提高了污染物的去除效果,而且拓宽了零价铁的使用范围.由于零价铁、氧化剂与污染物之间的电子迁移机制非常复杂,针对零价铁/氧化剂体系中复杂产物与作用机制的解析得到了不断的探索与发展.本文综述了基于零价铁的高级氧化技术与装备,分别介绍了零价铁与氧气、过氧化氢、臭氧、过硫酸盐、高锰酸盐等氧化剂结合的高级氧化体系,从电子迁移的角度阐述了零价铁与氧化剂的相互作用机理,分析了不同氧化剂存在条件下零价铁的腐蚀产物及其催化作用,并对基于零价铁的协同催化氧化技术进行了介绍,同时对实际废水处理过程中基于零价铁的高级氧化处理装备与组合工艺进行了总结,最后就目前零价铁/氧化剂体系存在的问题进行了分析并展望其应用前景.  相似文献   

9.
为改善纳米粉体的分散性,使其在高表面能态下稳定存在,以NaBH4液相还原Fe3+制备纳米级零价铁颗粒。对比采用不加入改性剂、加入改性剂2-膦酸丁烷-1,2,4-三羧酸(PBTCA)和改性剂TH-904,分别制备普通纳米级零价铁N-Fe0、改性纳米零价铁P-Fe0及T-Fe0。并对改性前后纳米零价铁进行X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、红外光谱(FTIR)及能谱(EDS)分析测试。结果表明,制备的N-Fe0、P-Fe0及T-Fe0颗粒平均粒径分别为125nm、73nm和64nm。改性后,由于颗粒粒径减小,引起产品部分氧化,但颗粒得到有效分散。FTIR测试表明,改性后产物中分别出现二种改性剂有效基团,表明改性剂对纳米零价铁有效分散起到了积极作用,并对该作用进行了分析。  相似文献   

10.
采用液相还原法制备纳米零价铁(nZVI),并用PXRD、TEM、BET和XPS等表征手段对材料进行表征。探讨了初始钨(Ⅵ)浓度、纳米零价铁用量和初始pH值对纳米零价铁吸附钨(Ⅵ)性能的影响,测定了纳米零价铁对钨(Ⅵ)的吸附等温线和吸附动力学曲线。研究结果表明,制备的纳米零价铁具有典型的核-壳结构,其粒径在10~30nm之间,BET比表面积为53m~2/g。纳米零价铁对钨(Ⅵ)的回收率随着初始钨(Ⅵ)浓度和初始pH值的增大而减小。在25℃条件下,纳米零价铁对钨(Ⅵ)的平衡吸附容量为172.82mg/g。Langmuir等温线方程可以很好地拟合纳米零价铁对钨(Ⅵ)的吸附等温线,且纳米零价铁对钨(Ⅵ)吸附动力学曲线符合准二级动力学模型。  相似文献   

11.
采用液相还原法制备纳米零价铁,使用质量分数为1%的壳聚糖对纳米零价铁进行改性,制备壳聚糖负载纳米零价铁吸附剂.考察pH、温度、吸附剂用量、吸附时间对Cr(Ⅵ)吸附性能的影响.再进行正交试验,探究吸附剂对Cr(Ⅵ)的最佳吸附条件.使用X射线衍射仪、扫描电镜、红外光谱对吸附剂进行表征.结果 表明:吸附Cr(Ⅵ)的最佳条件是...  相似文献   

12.
磁性壳聚糖微球(Magnetic chitosan microsphere,MCM)是一种新型吸附材料,具有独特的磁响应特性和良好的吸附性能,以其突出的环保和可控性在生物医学、食品工程和污水处理等许多领域受到高度重视。传统方法制备的MCM存在纳米粒子易溶于酸性溶液、应用范围窄等问题,因此研究者们在其优化改性方面展开了大量工作。本文从磁性纳米粒子改性和壳聚糖改性两个方面详细综述了优化MCM的研究进展,包括磁性纳米粒子的修饰与替换,壳聚糖分子印迹改性、接枝改性、金属螯合改性、烷基化改性等方法。总结了改性后MCM对废水中重金属离子、印染废料中阴阳离子染料的吸附情况和去除效果。最后讨论了改性MCM面临的问题与挑战,展望了其未来发展趋势,提出了进一步提高改性MCM应用效率的方法和设想。  相似文献   

13.
针对电镀、冶金、印染等行业产生的含铬废水所导致的环境污染难题,以城市污泥热解获得的污泥基生物炭(SB)为载体,制备了污泥基生物炭负载纳米零价铁(nZVI-SB)材料用于去除水中的Cr(Ⅵ),探究了铁炭质量比、初始pH值、投加量、温度等因素对去除Cr(Ⅵ)的影响。通过SEM-EDS、XRD和XPS等手段对n ZVI-SB去除Cr(Ⅵ)的机制进行分析。结果表明:n ZVI-SB对Cr(Ⅵ)废水具有较好的去除能力。在投加量0.5 g/L、初始pH=2、温度40℃条件下,Fe与SB质量比为1∶1的nZVI-SB(1∶1)对Cr(Ⅵ)吸附量最大为150.60 mg/g。Cr(Ⅵ)去除过程可通过Langmuir吸附等温式与准二级动力学方程进行拟合。nZVI-SB对Cr(Ⅵ)去除机制主要包括吸附、还原和共沉淀。本文表明污泥基生物炭与纳米零价铁可以协同发挥除Cr(Ⅵ)作用。  相似文献   

14.
利用液相还原法制备膨润土负载纳米零价铁(B-nZVI)并将其应用于含Cr(Ⅵ)废水的处理,研究了B-nZVI投加量、反应时间和溶液初始pH等3个因素对Cr(Ⅵ)处理效果的影响,探讨了B-nZVI对不同初始浓度的含Cr(Ⅵ)废水的降解动力学规律,通过扫描电镜和X射线衍射仪对反应前后的B-nZVI进行形貌分析。结果表明:膨润土能有效提高纳米零价铁(nZVI)的分散性并阻止其氧化。三因素对Cr(Ⅵ)去除率影响均达到显著水平(p0.05),其中投加量的影响达到极显著水平(p0.01);其显著性大小依次为:投加量溶液初始pH反应时间。在投加量为2.0g/L、反应40min、溶液初始pH=6的最佳工艺条件下,初始浓度为20mg/L的含Cr(Ⅵ)废水中Cr(Ⅵ)去除率可达99.15%。B-nZVI去除Cr(Ⅵ)的反应在不同Cr(Ⅵ)初始浓度下均能较好地符合准一级动力学模型,且可用L-H动力学模型描述;B-nZVI对Cr(Ⅵ)去除是吸附和还原共同作用的结果,且nZVI对Cr(Ⅵ)的还原作用是其去除的主要作用机制。  相似文献   

15.
空气中的污染物颗粒(PM)已经成为一个严重的环境问题,因此急需开发高效的空气过滤器。在本研究中,利用溶液吹纺(SBS)和雾喷技术,采用高横纵比的氮化硼纳米片(BNNSs)对聚丙烯腈(PAN)纳米纤维膜的表面进行雾喷改性,建立起分级结构,从而提高纳米纤维膜的比表面积,有效捕捉PM污染物。研究结果显示,具有分级结构的4-BNNSs/PAN空气过滤膜对PM2.5的过滤效率为95.13%,压降为34 Pa,与纺丝时长相同的PAN过滤膜相比,过滤效率提高了9.46%,而压降只提高了13 Pa,综合过滤表现更佳。本研究表明,通过将高比表面积的BNNSs雾喷到PAN纳米纤维膜的表面,构建分级结构的BNNSs/PAN复合膜是开发新型空气过滤膜的实用改性技术。  相似文献   

16.
随着工业的快速发展,电镀设备、采矿、纺织等行业排放的废水含有大量的重金属离子和有机污染物,这些污染物严重危害人类的身体健康.因此,如何快速有效地处理水体中的重金属离子和有机污染物是环境修复领域中亟待解决的问题.稻壳因具有来源广泛、可再生、环境友好等特点而被广泛应用于吸附材料和光催化材料领域.大量研究表明,稻壳能够去除污染水体中重金属离子和有机物的种类很多,但是对大多数污染物的去除能力不强,难以在实际应用中得到进一步推广.以稻壳为基体材料制备有高效去除能力的功能性材料,是近几年环境修复领域的研究热点.目前,研究者尝试以炭化、化学修饰等方式对稻壳改性,从而增大比表面积、孔隙率或者增加含氧官能团的数量,吸附性能也能随之改善,但是以上改性后的稻壳材料存在吸附能力弱和容易产生二次污染等问题.研究发现,负载Fe3 O4制备的磁性稻壳生物炭复合材料,不仅吸附性能强,且具有易分离、稳定性强、不会对环境造成二次污染等优点,这为稻壳基材料在实际应用的推广奠定了基础.另外,有研究报道,将稻壳中的SiO2作为半导体光催化剂(如TiO2、Ni2 O3)的载体可提高其光催化性能、回收利用率,使其在光学领域具有良好的使用性能.本文综述了稻壳材料本身的特性和改性稻壳制备稻壳基吸附剂的方法,讨论了稻壳基及其复合材料在水污染治理领域中作为吸附剂和光催化剂的应用.从不同类型的污染物角度出发,论述了稻壳基材料针对重金属离子、有机污染物处理过程中稻壳掺杂材料功能及体系作用机理的影响,还分析了影响污染物吸附的重要因素,最后对目前稻壳基材料在水治理领域应用进行了总结和对今后的研究方向做了展望.  相似文献   

17.
针对纳米二氧化钛(TiO2)颗粒粒径小、表面活性大、易团聚的问题,采用硅烷偶联剂KH-560对TiO2进行表面改性,并与聚丙烯树脂(PP)在双螺杆挤出机上熔融共混得到改性PP;通过FT-IR、TG、SEM等测试手段对改性纳米TiO2颗粒进行了表征,讨论了纳米TiO2的改性程度及其在PP中的分散性。结果表明:硅烷偶联剂已经成功的包覆在纳米TiO2的表面;同时在碱性环境下纳米TiO2表面包覆的有机物含量最多;当在碱性环境下表面改性的纳米TiO2为PP质量的3%时,在聚丙烯树脂中分散较均匀。  相似文献   

18.
以网络状孔型结构发达的膨胀石墨(EG)为载体, 采用化学沉积法制备负载零价铁(ZVI)的膨胀石墨(EG-ZVI)。利用SEM、XRD、FT-IR及XPS等对负载及反应前后的EG-ZVI进行表征, 探索了EG-ZVI对铅离子(Pb(II))的处理效果并对其反应产物及机理进行了分析。结果表明: 亚微米级ZVI成功负载到EG表面; 相比ZVI, EG-ZVI对Pb(II)的去除能力提升明显; EG-ZVI去除Pb(II)主要是吸附和还原作用的共同结果, 该过程符合一级动力学模型, 且控制步骤为化学反应过程。其还原过程是由负载在EG表面的ZVI腐蚀提供电子还原Pb(II)生成铅单质, 并进一步生成铅氧化物与氢氧化物; EG-ZVI能弥补ZVI在反应过程中生成惰性层导致去除效率低的不足, 使其在Pb(II)废水的实际修复中具有较高的应用前景。  相似文献   

19.
碳材料,包括纳米碳(石墨烯、碳纳米管等)和无定形碳(活性炭、生物炭和黑炭等),因其比表面积大、表面性质各异、导电储电性能优异,已被广泛应用于化工、能源、环保等领域。在环境应用中碳材料主要被用作吸附剂,但近十年来,碳材料作为电子传递介质与环境中多种电子供体(硫化物、产电微生物等)和电子受体(有机污染物、≡Fe~(III)等)的相互作用逐渐成为环境领域的研究热点。研究碳材料的电子传递过程和控制机理,对于理解和开发其在环境过程和环境修复中的作用意义重大。现有的相关研究主要集中在碳材料促进硫还原和微生物还原系统中硝基芳香类(NACs)和卤代烃类(R-X)污染物的还原降解,然而,碳材料的作用机理受电子供体种类、污染物性质和碳材料表面特征等因素影响,其发生机理各不相同,目前已被广泛认知的机制主要有以下三种:(1)碳材料表面官能团(如醌类)作为氧化还原媒介,提高电子传递效率;(2)碳材料的石墨化结构和表面缺陷位的导电作用,能够高效传导电子;(3)在硫化物还原体系中,吸附态S2-在碳表面形成的中间体作为还原活性位点,加速污染物的还原。此外,碳材料比表面积、孔隙度和表面电性的差异,有机污染物自身结构性质的差异,含碳体系(生物、非生物)的差异等因素也会直接或间接地影响碳材料对有机污染物催化还原降解的主控机理。由于碳材料自身结构和表面性质的复杂性,现有研究对该类过程的机理认知还不完整。本文系统地梳理了国内外有关碳材料介导NACs和R-X类有机污染物还原降解过程的作用机理,列举了依据现有的机理认知来提高碳材料性能的改性技术及其应用。对纳米碳材料而言,表面修饰和表面掺杂等通常能提高其传质效率和能量利用效率;对于多孔碳材料而言,化学活化(H3PO4或ZnCl2)和热处理等手段能增大碳材料比表面积,提高其导电性和电子储存能力,从而加强碳材料对NACs和R-X的催化降解效果,为应用碳材料修复地下水环境污染提供理论依据。碳材料促进有机污染物转化的现实意义在于:一方面,自然界中存在多种碳的形态,将直接或间接影响环境中有机物的迁移转化和元素循环;另一方面,碳材料具有环境友好性,其对有机污染物的催化降解作用在环境修复中具有巨大的应用潜力。碳材料也有望在今后的环境功能材料方面发挥更大的作用,为地下水中NACs和R-X的去除提供新的理论指导。  相似文献   

20.
本文综述了光催化纳米材料二氧化钛、纳滤膜、碳纳米管、纳米零价铁和膨润土这五种常见的纳米材料的特点及其在微污染水源给水处理、污水处理、海水淡化、海洋环境污染治理等领域中的应用,对纳米材料在水处理中的发展前景做出了展望.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号