首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Heavy metals in trace amounts are normal constituents of marine organisms. At sufficiently high concentrations, heavy metals are toxic to living organisms and so it is important to know by how much their concentration may be increased before effects on marine or estuarine populations can be detected or commercial species become unsuitable as food. A method of removing metals is by storage in a particular tissue. Several different sites for storing metals were investigated and concentrations of Cd, Cu, Pb and Zn were examined in muscle, liver and gonads of the smelt (Osmerus mordax) from the North shore of the St Lawrence estuary. Copper and zinc are constituents of several enzymes and are absolutely essential for normal growth and development, while cadmium and lead are not known to have necessary physiological function. A modified wet digestion procedure was used to prepare biological samples for the determination of trace elements by flameless atomic absorption spectrophotometry procedure, using calibration standards made up in a matrix of similar acidity (Table 1). NBS reference material bovine liver was analyzed along with the samples and the results were within the specified tolerance (Table 2). Analyses were reported on a dry weight basis (Table 3) and the correlations with total body weight were determined by regression analysis. Copper (range 0.3–3.3 μg g?1) and zinc (range 19–38 μg g?1) in muscle fillets were found to be negatively correlated with total body weight (Fig. 1). Apparent decreasing concentrations in these two metal levels in muscle sample with increasing body weight were possibly due to factor such as dilution with growth. Growth may dilute metal concentrations in an organism if tissue is added faster than metal. Livers and gonads contained greater levels of the four metals than somatic muscle. Liver metal concentrations of Zn (range 29–108 μg g?1) and Cd (range 0.06–0.37 μg g?1) increased with total body weight. All equations fit data at P < 0.01 (Fig. 2). Positive correlations between size and metal concentrations suggest that net uptake may occur. Inessential, slowly exchanging metals such as Cd appear to reflect an uptake which tend to become a cumulative process (age dependence of concentrations). The occurrence of insignificant correlation between liver concentrations of Cu (mean value: 4 μg g?1) and environmental concentrations of this metal was consistent with equilibration. Since fish are known to possess the metal binding protein metallothionein, a sequestering agent, detoxification of these metals in fish liver may be by sequestration rather than elimination. Increasing metal concentrations in liver may represent storage of sequestered products in that organ. In the gonads, no significant relationship exists between total body weight and trace metal contents. Results of t-test indicated that females had significantly greater Cu and Zn concentrations, but no significant difference existed between males and females for Cd concentrations (Figs 3 and 4). Thus, the relation between concentration and total body weight appears to be specific as to the species, tissues analyzed and environmental conditions. The comparison of metal concentrations in fish to assess variations in contamination levels requires understanding the relationship between metal concentration and body size within each population.  相似文献   

2.
Tellinid clams Macoma balthica were sampled every 2 months for 2.5 years at two locations from the Westerschelde estuary (The Netherlands) and submitted to in vitro short-term exposure to Cd, Cu and Zn. Total and heat-stable cytosolic metal concentrations have been measured before and after exposure to study the effects of the sampling season on metal uptake by the bivalve. We observed much higher uptakes of Cd and, to a lesser extent, Cu in winter than in summer, while Zn appears to be constantly regulated. These phenomena are amplified in the cytosol, especially for Cd, a non-essential element, for which the concentrations after exposure can reach 35–45 μg·g−1 (dry wt.) in winter, but only a maximum of 0.5 μg·g−1 in summer, all natural values being between 0.01 and 0.1 μg·g−1 on average. The contents (μg) of the various elements, either at the total or at the cytosolic level, are not constant, hence showing that the seasonal body weight fluctuation of the clams (dilution or concentration effect) is not the only parameter responsible for the metal uptake variability. Furthermore, we have shown that the proportion of cytosolic metal is not constant, but increases with the absolute cytosolic concentration up to 35–40. Therefore, the cytosolic phase of the cells plays a growing role in Cd, Cu and Zn storage as long as their total concentration increases.  相似文献   

3.
A partial budget is presented of the zinc, cadmium and lead entering the Derwent Reservoir. The mean levels in the water column upstream of the site of inflow are: Zn, 0.216 mg 1−1 ; Cd, 0.003 mg 1−1; Pb, 0.065 mg 1−1; the levels after passage through the 4.1 km2 reservoir fall by: Zn, 70.3%; Cd, 98.3%; Pb, 89.2%. Most of these metals are deposited in sediments, the mean values for which are: Zn, 1035 μg−1; Cd, 13μg−1; Pb, 827μg−1. Lead, a higher percentage of which occurs as particulate material, is deposited more rapidly than zinc; this effect is especially obvious when streaming of colder water along the bottom of the reservoir takes place at the time of floods. Macroscopic plants are only occasional in this reservoir, due perhaps in part to heavy metal toxicity. Of the two most common submerged species, Nitella flexilis probably accumulates almost all of its metal content directly from the water, but the data suggest that sediments are a source of some of the heavy metals accumulated by Glyceria fluitans.  相似文献   

4.
The use of biological indicators in studies of aquatic pollution (in fresh, estuarine or sea waters), as well as research about the metal transfers in food chains, need a great accuracy of the trace element determination. Therefore, as shown by the results of international intercalibration exercises, the mastery of analytical techniques is far from being perfect in all the laboratories.One of the main sources of error in atomic absorption results from non-specific absorptions due to the presence of important organic and mineral matrixes in biological materials and especially in aquatic and marine organisms. In this case, the correction of unspecific absorption by using deuterium lamp was insufficient and the determination of trace elements had to be preceded by a pre-instrumental stage which allowed the elimination of the organic matter by mineralization and of a large part of the mineral matrix by extraction. The previous separation was long and induced contamination risks. The use of the Zeeman effect background correction allows the transfer of most processes from the pre-instrumental to the instrumental stage. Moreover, the Zeeman effect has three advantages: (1) the background correction is effective up to 2 units of absorbance; (2) the correction is effective from 190 to 900 nm; (3) the method of the double beam is optimalized.The aim of this study was to apply the Zeeman effect to the determination of eight trace elements (Ag, Cd, Cr, Cu, Mn, Ni, Pb, Se) in three different biological solid samples, two originated from the marine environment (lobster hepatopancreas TORT-1, standard reference material from the National Research Council Canada; oyster tissues SRM 1566 from the US National Bureau of Standards) and one from the vegetable kingdom (tomato leaves, SRM 1573 from the US NBS).The experimental procedure is reduced to a minimum since it consists in the digestion of an aliquot of 100 mg of the powdered sample with 1 ml of concentrated nitric acid at 95°C for 1 h. Then the volume is adjusted to 4 ml with deionized water. The metal analysis is carried out using a graphite furnace coated with tantalum carbide.This analysis is achieved according to the method of standard addition. The three added concentrations used for each element are listed in Table 1. The analytical conditions and graphite atomizer program are indicated in Table 2. The temperature program has to be modified according to the type of equipment.The internal quality control of the suggested method related to four criteria: sensitivity, repeatability, accuracy, practicability. The results are shown in Table 3. The threshold of sensitivity (3 times the SD of a series of eight results obtained for a blank of digestion) are low: < 1 μg kg−1 for Ag, Cd and Mn; 1 μg kg−1 for Cr and Pb; 5 μg kg−1 for Cu and Ni and 15 μg kg−1 for Se. The variation coefficients, calculated for both two series of six determinations each, are generally included between 5 and 10%. The trace element concentrations determined by using this method are in perfect agreement with the certified values of the US NBS and NRC Canada (Table 3.)The quality of the results establishes the possibility of using a very easy and fast method to determine the level of eight trace elements in materials with high mineral and organic matter content.  相似文献   

5.
Gelatinous macroplankton organisms were collected in May 1984 in Villefranche-sur-Mer Bay and analysed for cadmium, copper, lead and zinc. Analyses were carried out by polarography for Cd, Cu and Pb and by flame atomic absorption for Zn. Phosphorus was also measured in the samples as a biomass parameter due to difficulties inherent in measuring dry weight of gelatinous organisms. The samples belong to the Tunicates, the Cnidarians (Hydromedusae, Siphonophores and Scyphomedusae), the Ctenophores and the Molluscs. Crustaceans living on some Tunicates were also sampled.As regards cadmium, copper and lead, mean concentrations did not show significant differences among the phyla studied: especially for Tunicates with mean values of 0.1 ng Cd μg P−1, 2.0 ng Cu μg P−1 and 0.9 ng Pb μg P−1 and for Cnidarians with mean values of 0.5 ng Cd μg P−1, 2.0 ng Cu μg P−1 and 0.9 ng Pb μg P−1 and for Cnidarians with mean values of 0.5 ng Cd μg P−1, 2.0 ng Cu μg P−1, 1.0 ng Pb μg P−1. On the other hand, mean zinc concentrations were significantly lower in Tunicates (7.9 ng Zn μg P−1) than in Cnidarians (36.8 ng Zn μg P−1).Zinc seems to be preferentially concentrated in organisms which are rich in collagen, constituting the mesoglea, such as the Cnidarians, the Ctenophore and the gelatinous Mollusc studied, rather than in organisms rich in tunicin such as the Tunicates.  相似文献   

6.
Particulate metal concentrations in the nearshore waters of Lake Ontario have been determined to be 690 ng l−1 for Cu; 40 ng l−1 for Cd; 180 ng l−1 for Ni; 1690 ng l−1 for Zn; 2100 ng l−1 for Mn; and 700 μg l−1 for Fe. These values are considerably higher than the particulate metal concentrations in the offshore waters: 130, 8, 34, 230, 110, 260 and 9000 ng l−1 for Cu, Cd, Ni, Zn, Pb, Mn and Fe respectively. In general, 50–80% of the Cu, 10–40% of the Ni, 20–60% of the Cd and >60% of the Pb in the lake water were bound to the suspended particulates. From the standing crop of the particulate metals and the estimated rates of their deposition on the lake bottom, the residence times of the particulate metals in the lake water column have been estimated to be about 0.5 yr. on the average. The suggestion is made that particulate organic matter may be an important vehicle for metal transport to the Lake Ontario sediments.  相似文献   

7.
The behaviour of Cu, Pb, Zn and Cd in a highly stratified estuary was examined. The distribution of ionic and ‘organically bound” forms of the metals was determined by differential pulse anodic stripping voltammetry (dpasv) before and after u.v. irradiation. The two forms of the metals were compared with the water characteristics of salinity, temperature, turbidity, flow, and inorganic and organic carbon.Irradiation increased the concentration of all four elements detectable by dpasv. The greatest increase was for Cu in the 1 m depth river water which yielded 7.5 μg l−1 before irradiation and 29 μg l−1 after irradiation. Cu and Cd showed minimum concentrations in the seawater layer at 4 m depth, corresponding to the fresh seawater flowing upstream below the halocline. The concentrations of Cu and Cd were higher in the river water than in the underlying seawater. Zn concentration in the river water was lower than in the seawater. Relationships between the trace metal concentrations and the characteristics of the water column are not clear, but the direction of water movement is a major influence.  相似文献   

8.
Toxicological and physiological effects of dehydroabietic acid (DHAA), a major poison to fishes in pulp and paper mill effluents, were studied by two experiments with rainbow trout, Salmo gairdneri Richardson: in the first, fish were acutely exposed for 4 days to an average DHAA concentration of 1.2 mg l−1 (Exp. I) and in the second for 30 days to an average of 20 μg DHAA l−1 (Exp. II).Compared to the controls, fish of Exp. I displayed a decreased relative weight of liver, an increased blood haematocrit, and increased haemoglobin as well as plasma protein concentrations. The aspartate aminotransferase activity of heart muscle was significantly elevated, as was also the lactate dehydrogenase (LDH) of white muscle tissue. In the blood plasma, the proportion of muscle type LDH activity was simultaneously increased. UDP-glucuronyl-transferase activities of liver and kidney were strongly decreased. Results suggest an increased and altered use of body energy reserves, decreased plasma volume and impaired liver function.Fish of Exp. II showed an increased relative weight of spleen. In addition, liver and gill LDH shifted towards heart-type. We conclude that 20 μg l−1 is close to the “minimum effective concentration” of DHAA to rainbow trout.  相似文献   

9.
As part of regional surveys of lakes in Norway the concentrations of Zn, Pb, Cu and Cd were measured in surface- and bottom-water samples collected from representative, small, pristine lakes (136 in southern Norway sampled in October 1974, 58 resampled in March 1975, and 77 in northern Norway sampled in March 1975). The lakes, a statistically representative sample of small lakes in Norway, were chosen such that their watersheds are undisturbed. Heavy-metal concentrations in these lakes thus reflect only natural inputs and anthropogenic inputs via the atmosphere.The generally low concentrations (Zn 0.5–12.0 μg l−1; Pb 0–2.0 μg l−1; Cu 0–2.0 μg l−1; Cd 0.1-0.5 μg l−1) measured in lakes in central and northern Norway provide estimates of natural “background” levels. These estimates may be too high because they include the global-scale deposition of heavy metals from the atmosphere which has increased as a result of industrial activities.Concentrations of Zn and Pb in lakes in southernmost and southeastern Norway lie above these “background” levels, apparently because of atmospheric deposition associated with the acidic precipitation that falls over southern Scandinavia. Increased heavy-metal concentrations in acid lakes may also be due to increased mobilization of metals due to acidification of soil- and surface-waters.  相似文献   

10.
The addition of Pb2+ (1.0 and 2.5 μg ml−1) and Cd2+ (2.5 and 5.0 μg ml−1) to growth medium decreased the growth of aquatic fungi, while Zn2+ even at a concentration of 10 μg ml−1 had no inhibitory effect. Low concentrations of Cd2+ and Zn2+ on the other hand stimulated mycelial growth. The fungi accumulated considerable amounts of metal from the growth medium, generally in the order Zn2+ > Pb2+ > Cd2+ · Cd2+ was also accumulated by fungi from successive changes of medium containing low concentrations of the metal. Application of Langmuir and Freundlich isotherms to the results showed that the metals were accumulated largely by adsorption to the surface of the mycelium.Three species of aquatic fungi supported the growth of the freshwater shrimp. Gammarus pulex when provided as sole food source, sustaining from 30 to 60% of shrimps fed for a period of 21 days. A marked reduction in shrimp viability occurred however, when G. pulex was fed Pythium sp. containing Cd2+ (150–170 μg g−1), with none of the shrimps surviving beyond 13 days, compared with a survival rate of 60% after 21 days for shrimps fed uncontaminated mycelium. Bodies of poisoned shrimps sampled on day 13 were found to contain Cd2+ (22.03 μg g−1) showing that the metal can be transferred from aquatic fungi to G. pulex, the first step in a food chain involving freshwater fish and higher organisms.  相似文献   

11.
The adsorption of trace metals on sediments of the Meuse River was interpreted in terms of competition between metals and protons for surface sites. Surface constants (*β1surf) were determined for Cu, Zn and Cd (10−1.8, 10−3.6 and 10−3.7). The constants for Pb, Ni, Ca and Mg (10−1.7, 10−3.8, 10−6.5 and 10−5.2) were estimated using a correlation between hydrolysis and surface constants. A chemical equilibrium computer program in which surface sites (for adsorption reactions) are treated as conventional ligands was used to calculate the speciation of Cu, Pb, Ni and Zn in the Meuse River. Calculated values of the adsorbed/dissolved distribution agreed well with observed values, after some realistic data manipulation. This work indicates that dissolved trace metal concentrations in the Meuse River are controlled by adsorption and not by precipitation mechanisms. The relationship between organic matter and suspended matter greatly influences the adsorption of metals like Cu and Pb.  相似文献   

12.
The subject of this article is the elaboration of a catcher of toxic metals (Zn, Cd, Hg, Pb) which enables them to be determined at μg 1−1 level.It is known that, at these low concentrations, it is advisable to prevent the sample from being altered in any way between the time of taking and the time of analysis; moreover, it is necessary to proceed, on the one hand, to the pre-concentration of the wanted elements and, on the other hand, to the elimination of the main elements present in water and likely to interfere at the time of analytical determination.We therefore made a catcher which makes it possible to achieve these two desired effects by chromatographic separation and to carry out the conditioning of the sample, in the field, in a well-defined, chemical form, stable in time as a small volume in a solid state, easy to carry and to store.The catcher is in the shape of a small, cylindrical capsule (diameter = 29 mm, thickness = 10 mm) in Makrolon (Lexan) whose bases are made of a nylon cloth and which contains a chelating resin load (Chelex-100, 100–200 mesh).At the time of use, the catcher is put into a dismountable filtering-apparatus which permits percolation of the solution containing the wanted metal traces.Then, to proceed to the analytical determination of the elements it is possible to use two methods: analysis in solution after elution;X-ray fluorescence spectrometry, or else activation analysis on the catcher dried and then pelletized when hot in an hydraulic press.The experimentation has included the following points:
1. 1. Determination of the conditions of chromatographic separation on Chelex-100 resin which permits optimal fixation of Zn, Cd, Hg and Pb and the elution of the main elements Ca, Mg and Fe. We chose soda-citrate medium 7.1 · 10−2 M at pH = 7.00;
2. 2. Determination of the conditions of use of the catcher and its efficiency according to the main elements in the sample of water.
The process we chose involves a sample of 1 l. of water which is acidified at pH 1 by concentrated HNO3 and then filtered through a membrane (0.45 μm).The solid residue is examined by X-ray fluorescence spectrometry.To the filtrate are added 100 ml of soda-citrate buffer 7.1 · 10−1 M and the pH is set to seven by addition of NaOH. Then the filtrate is percolated through the Chelex-100 resin catcher (flux = 1.5 ml min−1).Then, it is possible to proceed: either to the elution of toxic metals by HNO2 2M to determine them in solution (atomic absorption spectrophotometry, anodic stripping voltammetry); or to pelletizing of the catcher and to the analytical determination by X-ray fluorescence spectromy or activation analysis.The results of these methods are compared with different water: (1) spring warer: (2) over waters and (3) sea-water. The elution method as well as direct analysis of the pelletized catcher gave satisfactory agreement.  相似文献   

13.
Heavy metal inhibitions of the activities of β-galactosidase and dehydrogenases in activated sludge were studied.The activities of β-galactosidase and dehydrogenases were strongly inhibited by Cd and Hg. To produce 50% inhibition of β-galactosidase by Cd and Hg required 1.3 and 0.004 mmol g−1 MLSS, respectively. In the case of dehydrogenase, 50% inhibition appeared by Cd 0.16 and Hg 0.04 mmol g−1 MLSS, respectively.The inhibitions of the activities of β-galactosidase and dehydrogenases with Cd and Hg were easily recovered with the addition of thiol compounds. Reactivation by thiols suggested that Cd and Hg form reversible mercaptides with SH groups of β-galactosidase and dehydrogenases.The inhibitions of the activities of β-galactosidase and dehydrogenases by Cd and Hg gave reversible non-competitive type of kinetics. The inhibitor constant (Ki) values of β-galactosidase for Cd and Hg were calculated to be 1.6 mM (1.7 mmol g−1 MLSS) and 0.005 mM (0.005 mmol g−1 MLSS), respectively. Ki values of dehydrogenases for Cd and Hg were 0.6 mM (0.3 mmol g−1 MLSS) and 0.02 mM (0.01 mmol g−1 MLSS), respectively.  相似文献   

14.
Cu, Cd. Mg, Mn and Ni concentrations in whole Cambarus bartoni, trapped from Nepahwin Lake, Joe Lake and Wizard Lake, lying at distances of 10, 30 and 150 km, respectively, from the Sudbury smelters in Northeastern Ontario, showed an inverse relationship with the distance of the habitat from the emission site. Highest concentrations of Cu were observed in the hepatopancreas, Cd in the hepatopancreas and the gut, Fe and Mn in the gut, and Mg in the exoskeleton. Tissue concentrations of Ni and Zn were highly variable. Differences between males and females at each sampling site were not significant at the 5% level. The general relationship between crayfish tissue metal concentrations at the three sites was Cu > Mg > Mn > Zn > Ni > Cd. This observed relationship, except for Mg and Mn, agreed with the concentration relationship of these metals in the water and the sediments (top 10–20 cm) in the three lakes. In laboratory studies, Cu concentrations in the hepatopancreas, gills, exoskeleton and the viscera increased significantly over the control during the 4-weeks exposure to 125,250 and 500 μg Cu 1−1. Hepatopancreas, in general, had the highest Cu concentration, and the exoskeleton, the lowest. Relationship between Ni exposure and the tissue Ni concentrations in the four treatments was 800 μg Ni l−1 > 400 μg Ni l−1 = 200 μg Ni l−1 > control, while between the exposure periods and the tissue Ni concentrations was week 4 > week 1 > week 3 = week 2. Highest Ni concentrations at the end of the 4-week exposure to Ni were observed in the gut, gills and the hepatopancreas, and the lowest in the viscera. The present study suggests that Cambarus bartoni is a reliable indicator of the presence of class B and borderline elements with specific gravity > 5 in the aquatic environment. However, their value as biomonitors of variations in Cu and Ni concentrations in freshwater ecosystems is debatable.  相似文献   

15.
In a study designed to examine the long-term effects of inorganic selenium (IV) on early life stages of rainbow trout (Salmo gairdneri), survival was significantly reduced at selenium concentrations of 47 and 100 μg l−1 after 90 days of exposure. Length and weight were significantly reduced after 90 days of exposure to 100 μg l−1. Whole-body residues of selenium increased with increasing exposure concentrations but appeared to decline between 30 and 90 days of exposure. Analyses of trout backbone indicated little change in bone development with exposure to selenium (IV) with one exception; calcium concentrations were significantly decreased in fish exposed to 12 μg l−1 of selenium. Results of our study indicates that a recommended safe level of 10 μg l−1 for inorganic selenium would not significantly affect growth and survival of rainbow trout; however, concentrations of selenium near this level can reduce the levels of calcium in the backbones of trout.  相似文献   

16.
Flagfish (Jordanetta floridae Goode and Bean) were exposed to constant concentrations of vanadium (V) in the water from age 10 days to maturity, and second-generation fish were continued in the same concentrations to age 30 days. Residues of vanadium were directly related to exposure concentrations but bioconcentration factors were inversely related to them. Both residues and bioconcentration factors increased with exposure time up to 70 days, after which they remained stable to the end of exposure at 96 days. Residues and bioconcentration factors did not differ significantly between first- and second-generation fish, nor between males and females.Adults accumulated 21–29 μg V g−1 (whole body dry weight) during exposure to 0.48 or 1.50 mg V 1−1. These residues were significantly higher than values of 15–17.5, 4.4–4.8, and 0.27–0.54 μg V 1−1, found after exposure to 0.17, 0.041 mg V 1−1, and control conditions, respectively. Residues for these two lowest concentrations and control were significantly different from each other.Bioconcentration factors were 2.0–28 × two or three orders of magnitude lower than the factors for cadmium and zinc in the same species of fish, as determined by other investigators. The bioconcentration factors appeared, in fact, to be at the low end of the range found for metals, and danger to fish from bioaccumulation of vanadium was accordingly judged to be low.  相似文献   

17.
Tungsten carbide and cobalt are the main components of hard metal alloy while other metals such as chromium, niobium, tantalum, titanium and vanadium are sometimes added in smaller amounts. Exposure to hard metal dusts can induce a lung fibrosis with cobalt playing a major role. In order to provide information on the role that each metal may have in causing this disease, determination of the total content and the distribution of inhaled metals in lung tissue of hard metal workers is of paramount importance. However, samples such as transbronchial biopsy and bronchoalveolar lavage (BAL), often used in the medical diagnosis of pneumoconiosis, only allow for a small amount of material. This calls for sensitive and accurate analytical procedures for microdetermination and distribution of metals in pulmonary tissue and cellular material, such as macrophages. This work proposes a combination of sophisticated analytical techniques such as neutron activation analysis (NAA), currently applied to the determination of the total concentration of more than 30 elements in biological specimens, and PIXE analysis, particularly microPIXE, which has a great potential for microdistribution analysis in small biological samples. Principles and perspectives for the combined use of these techniques for the analysis of human tissue are outlined and discussed. NAA: determination of hard metals in lung tissue are carried out by neutron irradiation (2 × 1014 neutrons cm−2 s−1) in the HFR reactor of Petten. After neutron activation, radiochemical separations of 60Co, 187W, 182Ta, 51Cr followed by computer-based high resolution gamma ray spectrometry allow the measurement of these elements in pulmonary tissues with sensitivities ranging from 10−4 μg (Cr) to 10−6 μg (W). PIXE: this technique is multielemental and of relatively high sensitivity (μg/g) even in small total sample masses of from 10 to 100 μg, thus allowing the analysis of parts of needle biopsies. Whereas PIXE has been successfully applied to many medical problems, its usefulness is limited in the total samples analysis for cobalt-related hard metal disease, due to the low levels of cobalt in tissue combined with severe element interferences from the generally more abundant metal, iron. Nevertheless, microPIXE, a special variety of the method scanning over the sample with a focussed ion beam of about 2 × 2 μm2, could complement the NAA findings in total samples in the sense of achieving a microdistribution analysis of hard metals (including cobalt) in suitable thin tissue sections.The availability of specialized facilities at the JRC such as the powerful HFR reactor (Petten), the NAA laboratories (Ispra) and the microPIXE facility (Geel) could represent a European ‘reference pole’ for the study of metals in tissues of hard metal diseased subjects.  相似文献   

18.
Application of the BCR three-step sequential extraction procedure to sewage sludge samples collected at an urban wastewater treatment plant (Dom ale, Slovenia) is reported. The total concentrations of Cd, Cr, Cu, Fe, Ni and Zn and their concentrations in fractions after extraction were determined by flame or electrothermal atomic absorption spectrometry (FAAS, ETAAS) under optimised measurement conditions. Total acid digestion including hydrofluoric acid (HF) treatment and aqua regia extraction were compared in order to estimate the efficiency of aqua regia extraction for determination of total metal concentrations in sewage sludge. It was found experimentally that aqua regia quantitatively leached these heavy metals from the sewage sludge and could therefore be applied in analysis of total heavy metal concentrations. The total concentrations of 856 mg kg−1 Cr, 621 mg kg−1 Ni and 2032 mg kg−1 Zn were higher than those set by Slovenian legislation for sludge to be used in agriculture. Total concentrations of 2.78 mg kg−1 Cd, 433 mg kg−1 Cu and 126 mg kg−1 Pb were below those permitted in the relevant legislation. CRM 146R reference material was used to follow the quality of the analytical process. The results of the BCR three-step sequential extraction procedure indicate high Ni and Zn mobility in the sludge analysed. The other heavy metals were primarily in sparingly soluble fractions and hence poorly mobile. Due to the high total Ni concentration and its high mobility the investigated sewage sludge could not be used in agriculture.  相似文献   

19.
The sensitivity of smallmouth bass Micropterus dolomieui to acidified conditions was examined by exposing recently-hatched fish to pH levels ranging from 5.1 to 7.5 and aluminum concentrations ranging from 32 to 1000 μg l−1. The range of pH and aluminum concentrations included those found in the northern part of the species' range. Acute bioassays (96 h) conducted at a pH of 5.1 and aluminum concentrations 180 μgl−1 resulted in total mortality. The LC50 calculated for this species was 130 μg l−1. At pH values of 6.1 and 7.5, mortality was low ( 20%) regardless of aluminum concentrations. A 30-day chronic toxicity test was conducted at three pH levels (low 5.1, intermediate 5.5–5.7 and high 7.3), each with two aluminum concentrations (approx. 0 and 200 μg l−1). Survival was significantly lower in the test at pH 5.1 with aluminum, and at pH 5.7 with aluminum treatments than in the other treatments. Fish in the pH 5.1 without aluminum treatment had intermediate survival, while fish exposed to pH 5.7 without aluminum, pH 7.3 without aluminum and pH 7.3 with aluminum had high, and similar, survival. Sublethal effects on fish exposed to low pH and aluminum included deformities, reduced activity and abnormal swimming behavior. We conclude that the sensitivity of smallmouth bass to low pH and aluminum concentrations corroborates field investigations linking acidification and aluminum mobilization with depletion of smallmouth bass populations.  相似文献   

20.
The effects of exposure to 3.6 and 6.4 μg l−1 cadmium for periods up to 178 days on cardiac and ventilatory rates, hematocrit, hemoglobin concentration and erythrocyte adenosine triphosphate concentration in adult rainbow trout, Salmo gairdneri, were investigated. Except for slight transitory responses, 3.6 μg l−1 cadmium had no effect on any of the cardiovascular/respiratory parameters. Significant increases in cardiac and ventilatory rates, blood hematocrit and hemoglobin were observed in fish exposed to 6.4 μg l−1 Cd over the entire exposure period while erythrocyte ATP concentration declined during the last stages of exposure. Further experiments on the responses of fish exposed to 6.4 μg l−1 Cd for 30 days demonstrated an impairment of oxygen transfer across the gill. The results are discussed in terms of possible gill impairment and hyperactivity as toxic responses to cadmium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号