首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The sinterability, phase compositions, and microwave dielectric properties of LiF-doped nonstoichiometric CaSnxSiO(3+2x) ceramics prepared by the solid-state reaction were investigated. LiF addition effectively reduced the sintering temperature of CaSnxSiO(3+2x) ceramics and inhibited the volatilization of Sn. A pure monoclinic CaSnSiO5 phase was achieved in the 1.0?wt% LiF-doped CaSn0.94SiO4.88 ceramics sintered at 1175?°C, which exhibited good microwave dielectric properties of εr =?11.6, Q?×?f?=?34000?GHz, and τf =?+73.2?ppm/°C. The positive τf value was an atypical and important phenomenon for low-permittivity microwave dielectric ceramics, which could be a promising τf compensator.  相似文献   

2.
In current study, only 5?mol% Mn2+ was applied to fabricate high performance microwave dielectric ZnGa2O4 ceramics, via a traditional solid state method. The crystal structure, cation distribution and microwave dielectric properties of as-fabricated Mn-substituted ZnGa2O4 ceramics were systematically investigated. Mn2+-substitution led to a continuous lattice expansion. Raman, EPR and crystal structure refinement analysis suggest that Mn2+ preferentially occupies the tetrahedral site and the compounds stay normal-spinel structure. The experimental and theoretical dielectric constant of Zn1-xMnxGa2O4 ceramics fit well. In all, this magnetic ion, Mn2+, could effectively adjust the τf value to near zero and double the quality factor from 85,824?GHz to 181,000?GHz of Zn1-xMnxGa2O4 ceramics at the meantime. Zn1-xMnxGa2O4 (x?=?0.05) ceramics sintered at 1400?°C for 2?h exhibited excellent microwave dielectric properties, with εr =?9.7(@9.85?GHz), Q?f?=?181,000?GHz, tanδ?=?5.44?×?10?5,and τf =???12?ppm/°C.  相似文献   

3.
Low-firing (Zn0.9Mg0.1)1?xCoxTiO3 (x = 0.02–0.10) (ZMCxT) microwave dielectric ceramics with high temperature stability were synthesized via conventional solid-state reaction. The influences of Co2O3 substitution on the phase composition, microstructure and microwave dielectric properties of ZMCxT ceramics were discussed. Rietveld refinement results show the coexistence of ZnTiO3 and ZnB2O4 phases at x = 0.02–0.10. (Zn0.9Mg0.1)1?xCoxTiO3 ceramic with x = 0.06 (ZMC0.06T) obtains the best combination microwave dielectric properties of: εr = 21.58, Q × f = 53,948 GHz, τf = ? 54.38 ppm/°C. For expanding its application in LTCC field, 3 wt% ZnO-B2O3-SiO2 (ZBS) and 9 wt% TiO2 was added into ZMC0.06T ceramic, great microwave dielectric properties were achieved at 900 °C for 4 h: εr = 26.03, Q × f = 34,830 GHz, τf = ? 4 ppm/°C, making the composite ceramic a promising candidate for LTCC industry.  相似文献   

4.
The Zn1.8SiO3.8 (ZS) ceramics with BaCu(B2O5) (BCB) additive were synthesized by the conventional solid-state reaction route and the effect of BCB additive on the microwave dielectric properties of the ceramics was investigated. The results demonstrate that BCB could effectively decrease the sintering temperature from 1300?°C to 930?°C and does not induce obviously degradation of the microwave dielectric properties. The 6.wt% BCB added ZS ceramics exhibited a low sintering temperature (~ 930?°C) and excellent dielectric properties of εr =?6.79, Q×f =?33,648?GHz, and τf =??30?ppm/°C. To compensate the negative τf value of this system, TiO2 powders were introduced. Particularly when 10.wt% TiO2 was added, good microwave dielectric properties of εr=?8.175, Q×f=?21,252?GHz, and τf =?1.2?ppm/°C were obtained for the 6.wt% BCB added ZS ceramic sintered at 930?°C for 3?h. Moreover, BCB added ZS-TiO2 ceramics have a chemical compatibility with silver, which indicate that the BCB added ZS ceramics are promising candidate for LTCC applications.  相似文献   

5.
The Ca1-xSrxWO4 (x?=?0, 0.02, 0.04, 0.06, 0.08, 0.10) ceramics were fabricated through solid-state reaction, and the relationships among microwave dielectric properties of Ca1-xSrxWO4, bond ionicity, lattice energy and bond energy were systematically investigated for the first time. The patterns of X-ray diffractions of Ca1-xSrxWO4 presented tetragonal scheelite structure and no second phase appeared throughout the entire compositions. Dielectric properties of Ca1-xSrxWO4 were proved to be related to the microstructures: dielectric constant (εr) of Ca1-xSrxWO4 was dependent on the bond ionicity; the quality factor (Q×f0) of Ca1-xSrxWO4 was affected by W-site lattice energy when intrinsic loss is dominant; the temperature coefficient of resonant frequency (|τf|) would increase if B-site bond energy decreased. Ca1-xSrxWO4 ceramic showed excellent microwave dielectric properties, εr =?9.42, Q×f0 =?79876?GHz and τf =??18.8?ppm/°C when x?=?0.08 and sintered at 1100?°C for 4?h.  相似文献   

6.
Bo Li  Jiawei Tian  Lei Qiu 《Ceramics International》2018,44(15):18250-18255
Ca5Zn4-xMgxV6O24 (x?=?0–3) microwave dielectric ceramics with low sintering temperature were synthesized via the conventional solid-state reaction. Effects of the substitution of Mg2+ for Zn2+ on crystal structures and microwave dielectric properties were investigated. XRD and Rietveld refinement showed the solid solution single phase formed when 0?≤?x?≤?2, but a few ZnO was observed when x?=?3. Meanwhile, the lattice parameters were found to decrease monotonously with Mg content increasing. The vibration modes of Raman were confirmed and the relationship with microwave dielectric properties was analyzed. Appropriate substitution of Mg2+ improved the packing fraction, the cation ordering degree, and the Y-site bond valence, contributing to high Q×f and low | τf |. However, the εr reduced with the increasing content of Mg2+ due to the decrease of ion polarizability. Finally, the best microwave dielectric properties were achieved at x?=?2 with εr =?11.0, Q?×?f?=?66,365?GHz (at 10.0?GHz), and τf =??80.4?ppm/°C.  相似文献   

7.
ZnO-deficient Zn2-xGeO4-x ceramics with 0.05?≤?x?≤?0.15 were synthesized because a ZnO secondary phase is formed in the stoichiometric Zn2GeO4 ceramics synthesized using micrometer-sized ZnO and GeO2 powders. The Zn1.9GeO3.9 ceramic sintered at 1000?°C showed a homogeneous Zn2GeO4 phase with good microwave dielectric properties: εr of 6.8, Q?×?f of 49,000?GHz, and τf of ?16.7?ppm/°C. However, its sintering temperature was still too high for it to be used as an advanced substrate for low-temperature co-fired ceramic devices. Therefore, various amounts of B2O3 were added to the Zn1.9GeO3.9 ceramics to reduce their sintering temperature. Owing to the formation of a B2O3-GeO2 liquid phase, these ceramics were well sintered at low temperatures between 925?°C and 950?°C. In particular, 15?mol% B2O3-added Zn1.9GeO3.9 ceramic sintered at 950?°C showed promising microwave dielectric properties for advanced substrates without the reaction with an Ag electrode: εr?=?6.9, Q?×?f?=?79,000?GHz, and τf?=??15?ppm/°C.  相似文献   

8.
A series of Ca0.61Nd0.26Ti1-x(Cr0.5Nb0.5)xO3 (CNTCNx) (0 ≤ x ≤ 0.1) ceramics were prepared via a solid state reaction method. All CNTCNx samples were crystallized into the orthorhombic perovskite structure. The SEM micrographs indicated that the average grain sizes of samples depended on (Cr0.5Nb0.5)4+ concentration. And as (Cr0.5Nb0.5)4+ concentration increased, the average grain size of samples decreased significantly. The short range order (SRO) structure and structural distortion of oxygen octahedra proved to exist in CNTCNx crystals from Raman spectra analysis results. The microwave dielectric properties highly depended on the B-site bond strength, oxygen octahedra distortion, reduction of Ti4+ to Ti3+ and internal strain η. At last, the CNTCN0.06 ceramic sintered at 1400 °C for 4 h exhibited good and stable comprehensive microwave dielectric properties of εr = 92.3, Q × f = 13,889 GHz, τf = + 152.8 ppm/°C.  相似文献   

9.
BaAl2?2xNi2xSi2O8?x (x = 0, 0.005, 0.01, 0.02, 0.03) ceramics were prepared using traditional solid phase reaction method. The microwave dielectric properties, including permittivity (εr), quality factor (Q × f), and temperature coefficient of resonant frequency (τf), were discussed based on the bond valence theory. The first-principle calculation was adopted to determine the site (Ba, Al, and Si) where doping element (Ni2+) would be inclined to occupy. The substitution of Ni2+ for Al3+ contributed to the breaking of Al-O and Si-O bonds and then facilitated the BaAl2Si2O8 (BAS) hexacelsian-celsian transformation. Moreover, this substitution could change the bond strength between cation and oxygen anion due to the variation of the bond valence, which reasonably explained the variation of εr, Q × f, and τf values. Well-sintered and completely transformed celsian ceramics can be obtained after doping with Ni2+. When x = 0.01, compact BaAl1.98Ni0.02Si2O7.99 ceramic exhibited highly promising microwave dielectric properties: εr = 6.89, Q × f = 53, 287 GHz and τf = -25.31 × 10?6 /°C.  相似文献   

10.
The phase composition, microstructure, microwave dielectric properties of (Al0.5Nb0.5)4+ co-substitution for Ti site in LiNb0.6Ti0.5O3 ceramics and the low temperature sintering behaviors of Li2O-B2O3-SiO2 (LBS) glass were systematically discussed. XRD patterns and EDS analysis result confirmed that single phase of Li1.075Nb0.625Ti0.45O3 solid solution was formed in all component. The increase of dielectric constant (εr) is ascribed to the improvement of bulk density. The restricted growth of grain has a negative influence on quality factor (Q×f) value. The τf value could be continuously shifted to near zero as the doping content increases. Great microwave dielectric properties were obtained in LiNb0.6Ti(0.5-x)(Al0.5Nb0.5)xO3 ceramics (x?=?0.10) when sintered at 1100?℃ for 2?h: εr =?70.34, Q×f =?5144?GHz, τf =?4.8?ppm/℃. The sintering aid, LBS glass, can effectively reduce the temperature and remain satisfied microwave performance. Excellent microwave dielectric properties for x?=?0.10 were obtained with 1.0?wt% glass: εr =?70.16, Q×f =?4153?GHz (at 4?GHz), τf =?-0.65?ppm/℃ when sintered at 925?℃ for 2?h.  相似文献   

11.
《Ceramics International》2022,48(21):31528-31536
In this work, a new Zn1-xNixMoO4 (ZNMO) (x = 0.03) ceramic with low-dielectric constant, low-loss, and low-sintering temperature for X-band two-dimensional (2D) beam splitting is developed by solid-state reaction method. This ceramic has excellent microwave dielectric properties of εr = 8.5, Q × f = 28192 GHz, τf = ?60.2 ppm/°C. The effects of Ni2+ substitution on the microwave dielectric properties of the ZnMoO4 ceramic are studied in detail through crystal structure analysis, Raman spectroscopy, and first-principles calculations. For the first time, an array antenna for X-band 2D electromagnetic beam splitting is designed by using this ceramic as a substrate. The effects of the dielectric constant and dielectric loss on the radiation efficiency of the array antenna are revealed. The normalized reflection amplitude and reflection phase of the unit cell exceed 0.97 and cover 360°, respectively. The function of 2D electromagnetic beam splitting is verified by the overall far-field pattern of the array antenna. This work has the opportunity to promote the development of LTCC and microwave dielectric ceramics.  相似文献   

12.
Structural characteristics exert significant influences on microwave dielectric properties, and ion substitution is widely adopted to modify material performances by adjusting the crystal structure. In this work, low loss Li3Mg2-xCuxNbO6 (x?=?0–0.04) ceramics were prepared by Cu2+ substitution. The impacts of Cu2+ substitution for Mg2+ sites on the microwave dielectric characteristics and crystal structure were discussed in detail. Rietveld refinement results implied that a single Li3Mg2NbO6 phase was formed. Additionally, a dense and homogeneous microstructure with grain sizes of 7–9?μm could be achieved, and moderate Cu2+ substitution could significantly promote the grain growth. The correlation between microwave dielectric characteristics and crystal structure was discussed by calculating some structural parameters. The εr was determined by the polarizability. The Q?×?f was influenced by the packing fraction. The τf value was dependent on the NbO6 octahedron distortion, and the τf value could be adjusted to near zero for x?=?0.02. Typically, the Li3Mg2-xCuxNbO6 (x?=?0.02) composition exhibited remarkable microwave dielectric performances: εr?=?15.75, Q?×?f?=?92,134?GHz (9.86?GHz) and τf?=??2?ppm/°C, making it a promising candidate for temperature-stable millimeter-wave applications.  相似文献   

13.
Recently, lanthanide niobates have attracted significant attentions in multi-functional materials. Herein a series of fergusonite structure-related (1-x)NdNbO4-xLnNbO4 (Ln = Yb, Er, Ho, Dy, Gd and Ce; 0.02 ≤ x ≤ 0.08) ceramics were prepared via conventional solid-state reaction method and the microwave dielectric properties were systematically discussed. The X-ray diffraction, Raman spectra were employed to investigate the crystal structure. Obtained results indicate that the ceramic samples present single monoclinic phase belong to the space group of I2/a. Microwave dielectric behaviors shown that the permittivity (εr) and the quality factor (Q × f) were influenced by the relative density, and the temperature coefficients of resonant frequency (τ?) value kept the same variation tendency with the Nb-site bond valence. Furthermore, Far-IR and bond energy study evidenced the Ln-O oscillations dominated the main dielectric polarization and system stability. Good microwave dielectric properties, with εr ~ 20.88, Q × f ~ 66,510 GHz (at 8.60 GHz) and τf ~ ? 36.59 ppm/°C, were obtained in 0.94NdNbO4–0.06YbNbO4 ceramics when sintered at 1250 °C for 4 h. The (Nd0.94Yb0.06)NbO4 might be potential candidate for the applications of modern microwave devices.  相似文献   

14.
In this work, Zn-Ni co-modified LiMg0.9Zn0.1-xNixPO4 (x = 0–0.1) microwave dielectric ceramics were fabricated using a solid state synthesis route. Rietveld refinement of the XRD data revealed that all ceramic samples have formed a single phase with olivine structure. SEM images showed that the samples have a dense microstructure, that agrees with the measured relative density of 97.73 %. Based on the complex chemical bond theory, Raman and infrared reflectance spectra, we postulate that εr is mainly affected by the ionic polarizability, lattice and bond energy, while P-O bond plays a decisive role in Q×f and τf value. Optimum properties of Q×f ~ 153,500 GHz, εr ~ 7.13 and τf ~ ?59 ppm/°C were achieved for the composition LiMg0.9Zn0.06Ni0.04PO4 sintered at 875 ℃ for 2 h. This set of properties makes these ceramics an excellent candidate for LTCC, wave-guide filters and antennas for 5 G/6 G communication applications.  相似文献   

15.
Sr1+xSm2Al2O7+x (0 ≤ x ≤ 0.05) ceramics were prepared by a conventional solid-state reaction method. Slight Sr2+ nonstoichiometry dramatically enhanced the microwave dielectric performance of the ceramics. Compared with the stoichiometric material, Sr-deficient ceramics show greatly enhanced microwave dielectric properties. For x = 0.03, the ceramics exhibited good microwave dielectric properties of εr = 18.31, Q × f = 78,000 GHz and τf = 2.28 ppm/°C. ZnO and LiF sintering aids were added to the ceramic to reduce the presintering temperature and enhance the microwave dielectric properties of the ceramics. After 0.25 wt% ZnO and 0.25 wt% LiF were added, the ceramics exhibited microwave dielectric properties of εr = 19.40, Q × f = 81,400 GHz and τf = 3.27 ppm/°C.  相似文献   

16.
Al(1-x)(Si0.5Zn0.5)xPO4 (0 ≤x≤0.6) ceramics were prepared via solid state reaction process. Their structural evolution, sintering behavior and microwave dielectric properties were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and with a network analyzer. Phase pure AlPO4 could not be obtained for the undoped composition. However, microscopically homogeneous single phase solid solution formed within the compositional range of 0 < x ≤ 0.05. Immiscibility with two-phase structure within apparently single phase solid solution could be observed for other doped compositions (0.1 ≤ x ≤ 0.6). Small level of doping with (Si0.5Zn0.5)3+ (x≤0.4) stabilized the orthorhombic cristobalite-like AlPO4 (C-AlPO4) phase; while further doping led to the transformation from orthorhombic α-C-AlPO4 into cubic β-C-AlPO4 phase. The doping with (Si0.5Zn0.5)3+ considerably improved the sinterability and reduced the sintering temperature to ?900 °C when x = 0.6. The dielectric permittivity slightly increases and the Q × f value decreases with the increasing doping concentration. All composition demonstrate low permittivity (?r ?4) and negative value of τf. Good combined microwave dielectric properties with ?r ?3.9, Q × f?25,000 GHz and τf ? -25 ppm/oC could be obtained for the x = 0.2 composition after sintering at 1200 °C/2h.  相似文献   

17.
In this paper, dense 0.9Al2O3 ??0.1TiO2 ceramics with highly improved microwave dielectric properties were prepared by a noncontaminated direct coagulation casting (DCC) method. The suspension was destabilized and coagulated by consumption of the dispersant without introducing impurity ions. The effect of dispersant content, pH value and solid loading on the rheological properties of 0.9Al2O3 ??0.1TiO2 suspension was investigated. It was found that 0.9Al2O3 ??0.1TiO2 suspension with a high solid loading of 50?vol% and low viscosity of 0.7?Pa?s could be prepared by adding 0.5?wt% TMAOH at the pH in the range of 10–12. The suspension was coagulated by adding 2?vol% GDA when it was treated at 60 ~ 80?°C for 40 ~ 60?min. Compared with dry pressing method, more homogeneous and denser microstructure could be obtained in 0.9A12O3 ??0.1TiO2 ceramics prepared by DCC via dispersant reaction which were sintered at 1550?°C for 3?h and annealed at 1100?°C for 5?h. The Al2TiO5 second phase in 0.9A12O3 ??0.1TiO2 ceramics prepared by DCC via dispersant reaction could be eliminated more easily by annealing treatment. After annealing treatment, only Al2O3 and TiO2 phases could be detected. Therefore, higher density and much better microwave dielectric properties with ρ?=? 3.81?±?0.02?g/cm3, εr =?12.17?±?0.02, Q ×?f =?25,637?±?749?GHz, τf =?13.12?±?1.62?ppm/°C were obtained by DCC via dispersant reaction, and the Q ×?f value almost improved by 25%. Without introducing impurity ions, it provides a new insight into preparing complex shaped function ceramics with high properties.  相似文献   

18.
Mg(1-x)ZnxTa2O6 (x = 0.00?0.08) dielectric ceramics were synthesized via the traditional solid-state reaction method. We used XRD and Rietveld refinement to demonstrate that a pure Mg(1-x)ZnxTa2O6 phase with trirutile structure was formed. Zn2+ substitution helped to decrease the Raman full width at half width of the A1g mode at 703 cm?1, which resulted in an increase in the order and rigidity of the TaO6 octahedron, this in turn contributed to improving the Q×f values. Additionally, the introduction of Zn2+ significantly promoted grain growth and increased the dense, and the molecular polarizability, these factors lead to a higher permittivity. Moreover, enhanced Ta-O bond energy resulted in a more stable TaO6 octahedron in the Mg(1?x)ZnxTa2O6 system, which contributed to enhanced τf values via substitution of Zn2+ doped on the A-site. Correspondingly, the microwave dielectric properties were significantly improved for 0.04-doped samples, obtaining: εr = 27, Q × f = 185,000 GHz (at 7.47 GHz), τf =32 ppm/°C.  相似文献   

19.
Low-permittivity LiAl1-x(Zn0.5Si0.5)xO2 microwave dielectric ceramics were prepared by the solid-state reaction method. Single-phase LiAlO2 solid solutions with a tetragonal structure were achieved at x ≤ 0.12. Partial substitution of [Zn0.5Si0.5]3+ for Al3+ could improve the microstructure and prevent from absorbing moisture of pure LiAlO2 ceramics, which slightly increases their relative permittivity (εr). The quality factor (Q × f) and temperature coefficient of resonant frequency (τf) were closely related to the crystallinity and cation disorder of the B-site characterized by the full width at half-maximum of B1(1) –mode assigned to Li–O–Al stretching. The optimum microwave dielectric properties (εr = 6.12, Q × f = 56986 GHz and τf = -122 ppm/°C) were obtained in the sample with x = 0.02 sintered at 1300 °C.  相似文献   

20.
Novel low-temperature fired Li3Mg2Nb1-xVxO6 (x?=?0.02??0.08) microwave dielectric ceramics were synthetized by the partial substitution of V5+ ions on the Nb5+ sites. The effects of V5+ substitution on structure and microwave dielectric properties were investigated in detail. XRD patterns and Rietveld refinement demonstrated that all of the samples exhibited a single orthorhombic structure. The structural characteristics such as the polarizability, packing fraction and NbO6 octahedron distortion were determined to establish the correlations between the structure and the microwave dielectric characteristics. The ?r values presented a tendency similar to that of the polarizability. The high Q×f values were mainly attributed to the effects of the grain sizes and density rather than the packing fraction. The variation in the τf values was attributed to NbO6 octahedron distortion. Notably, the Li3Mg2Nb1-xVxO6 (x?=?0.02) ceramics sintered at 900?°C had outstanding microwave dielectric properties: εr=?16, Q×f=?131,000?GHz (9.63?GHz), and τf=???26?ppm/°C, making these ceramics promising ultralow loss candidates for low temperature co-fired ceramics (LTCC) applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号