首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 414 毫秒
1.
制备工艺复杂、表面粗糙结构耐久性差等因素制约了超疏水涂层在现实中的大规模应用。本研究采用十八烷酸对环己二胺四官能团环氧树脂(AG602)接枝改性制备了低表面能环氧树脂SAEP,并将SAEP与疏水纳米二氧化硅粒子共混后涂膜,对其热固化后涂层的性能进行研究。结果表明:当nmSiO2质量分数为30%时,涂层表面具备超疏水性,水接触角为156.5°,滚动角为5.1°。涂层在承受砂纸45次循环打磨后仍能保持超疏水性。此外,涂层还具备优良的自清洁能力与耐酸碱腐蚀能力。  相似文献   

2.
用氨基硅油( APDMS)改性水性环氧树脂( EP)得到疏水性的环氧树脂乳液( APDMS-EP);用 1H,1H,2H,2H-全氟辛基三乙氧基硅烷( FAS)与纳米 SiO2反应得到氟改性纳米 SiO2(F-SiO2)。采用不同比例的 F-SiO2与 APDMS-EP进行复配,室温固化制备疏水涂层,并对 F-SiO2的结构进行了表征,研究了 F-SiO2用量对涂层的接触角、铅笔硬度、附着力、热稳定性及耐腐蚀性能的影响。结果表明: APDMS的引入使水性环氧树脂涂层的水接触角从 47.3°提高到 97.7°;加入 F-SiO2后涂层疏水性进一步提高,当加入 15%的 F-SiO2时,涂层对水和丙三醇的接触角分别为 120.3°和 104.5°,F-SiO2的加入也增强了涂层的防腐性能。  相似文献   

3.
利用乳液缩聚法制备芯材为氟硅烷( FAS13)壁材接枝紫外吸收剂的二氧化硅微胶囊,将其与有机硅树脂乳液共混,涂覆于棉织物表面形成超疏水防紫外织物涂层。通过扫描电镜和透射电镜观察微胶囊的形态和粒径,并对涂层的水接触角和防紫外性能进行了测试,同时测试了涂层的耐老化、耐磨损、耐高温以及耐酸碱性。结果表明:织物涂层中微胶囊最佳含量为 45%(其中内含 6%紫外吸收剂),由此制备的涂层表面水接触角可达到 150°以上,并且具有较好的耐老化、耐高温、耐酸碱腐蚀、耐磨损等性能;同时该织物涂层具有优异的防紫外性,紫外线防护系数(UPF)可以达到 111.2。  相似文献   

4.
将表面修饰有高疏水链结构的纳米二氧化硅微粒加入到汽车蜡中,制备出了具有疏水性的纳米复合涂层,利用接触角测定仪、扫描电子显微镜(SEM)考察了其性能。结果表明,当纳米微粒添加到5%时,涂层的接触角达到了150°以上,具有超疏水性,SEM观察了表面形貌。  相似文献   

5.
通过机械共混的方式将水性环氧树脂与硅丙乳胶进行复配,并添加防腐颜料、填料及各种助剂制备出一种自分层水性轻防腐涂料.将制得的环氧–硅丙复合涂层进行表征,发现纯环氧涂层的水接触角为56°、纯硅丙涂层的水接触角为91°,而环氧树脂与硅丙乳胶经过2:1、1:1、1:2这3个不同比例复配所得的涂层的水接触角分别为87°、89°、...  相似文献   

6.
针对常规超疏水涂层制备工艺繁琐等问题,以介孔SiO2纳米颗粒(MCM-41)为填料和载体,聚二甲基硅氧烷(PDMS)为低表面能改性剂,环氧树脂及其固化剂为成膜物,采用喷涂法制备了超疏水涂层。通过场发射扫描电子显微镜、共聚焦显微镜、接触角测量仪、拉伸试验机对其表面形貌、结构、疏水性及附着力进行表征。重点考察了PDMS改性的MCM-41(MCM-41/PDMS)和树脂基体质量比对涂层性能的影响。结果表明:当MCM-41/PDMS质量分数为55%,可以得到涂层疏水性(接触角150°,滚动角9°)和附着力(7.33 MPa)的最佳匹配,涂层经过胶带剥离300次和磨损150周期后,水接触角仍大于150°。  相似文献   

7.
以氯铂酸为催化剂,通过五甲基二硅氧烷与端羟基聚丁二烯的硅氢加成反应,首次合成出以聚丁二烯为主链、侧链含硅氧烷的改性端羟基聚丁二烯。研究了硅氧烷改性的端羟基聚丁二烯作为聚氨酯软段对泡沫疏水性及吸油性能的影响。结果表明,硅氧烷接枝聚丁二烯作为聚氨酯软段可以有效地降低聚氨酯弹性体的表面能从而提高其疏水性,聚氨酯弹性体与水的接触角从未改性的84.6°提高到108°,硅氧烷接枝聚丁二烯制备的聚氨酯泡沫的与水的接触达到了158°;由于硅氧烷接枝聚丁二烯与甲苯、汽油和柴油的相容性较好,泡沫在吸附甲苯、汽油和柴油的过程中伴随着孔的填充的同时致使基体溶胀,从而可以有效地提高泡沫的吸附倍率。  相似文献   

8.
将二氧化硅纳米颗粒和硅树脂制成混合液,采用喷涂法(spray-coating)制备出了具备超疏水性的复合涂层.研究了二氧化硅、硅树脂不同含量配比对涂层疏水性能的影响,结果表明复合涂层的接触角随二氧化硅含量的增加而增加.在二氧化硅含量大于3%(质量分数)时,涂层显现超疏水性;当二氧化硅含量为3%(质量分数)、硅树脂含量为7%(质量分数)时,涂层与水的接触角达到151.6°,滚动角接近0°.通过扫描电子显微镜(SEM)观察涂层表面的微观结构,发现超疏水性的涂层具备微-纳复合阶层结构,类球状突起粒径在5μm左右,类球状突起上分布纳米团聚颗粒,直径约为50 nm.这种类似荷叶表面的微(纳复合阶层结构,结合硅树脂的低表面能,使得复合涂层具备了超疏水性能.  相似文献   

9.
通过KH-560改性光催化纳米Ti O2与3-KH-550改性微米Si O2的偶合反应制备草莓型微球,用氟硅烷改性微球表面,再将其与羟基氟硅油、甲基三丁酮肟基硅烷共混制得超疏水涂料,将其涂覆于基材表面室温固化制得超疏水涂层。利用扫描电镜和光学接触角测量仪对涂层形貌和润湿性进行了表征,并对涂层表面耐久性和自补偿性进行了测试。结果表明:当颜基比为4.5∶5.5时,涂层表面的水接触角可以达到165°,同时草莓型微球表面粗糙度可显著提高涂层的超疏水性;此外该涂层具有优异的耐油污性和耐酸碱性,更为重要的是,由于氟碳链段的自补偿性可以使受损涂层恢复超疏水性。  相似文献   

10.
PTFE-PPS复合超疏水涂层的制备与表征   总被引:2,自引:0,他引:2  
通过喷涂工艺在铝基片表面制备出聚四氟乙烯(PTFE)-聚苯硫醚(PPS)复合超疏水涂层,该复合涂层具有与荷叶表面类似的二次结构,与水的静态接触角为155o,滚动角为7o. 与纯PTFE超疏水涂层相比,PTFE涂层中引入PPS后,涂层的粘附力从5级提高到1级,铅笔硬度从4B提高到4H,柔韧性从(10±0.1) mm提高到(1±0.1) mm,可以更好地满足工业应用要求.  相似文献   

11.
《应用化工》2022,(11):2102-2106
采用两步法对纳米二氧化硅进行有机无机杂化改性,首先通过异氰酸酯的桥接作用,在纳米二氧化硅的表面引入环氧树脂分子,再利用环氧基团的碱式开环反应,形成可参与交联固化的羟基,制备了表面接枝含羟基柔性链段的纳米填料,研究了纳米二氧化硅不同用量对涂层材料力学性能与耐磨性能的影响。结果表明,有机无机杂化改性后的纳米二氧化硅能与有机树脂发生化学反应,改善了无机纳米二氧化硅在涂层中的分散性,提高了有机/无机的界面相容性,从而提高了涂层的韧性和致密性。当改性纳米二氧化硅的添加量为6%时,与添加未改性纳米填料的涂层相比,其耐磨性提高了24%,拉伸强度提高了25%,断裂伸长率提高了50%,涂层的饱和吸水率降低了40%。  相似文献   

12.
王鑫  王兵兵  杨威  徐志明 《化工进展》2023,(8):4315-4321
超疏水涂层具有极广的应用前景,然而在金属表面制备稳定的超疏水涂层具有一定挑战。为提高涂层稳定性,本文通过简单浸泡法在不锈钢表面形成稳定的聚多巴胺(PDA)中间涂层,随后采用电泳沉积法在PDA修饰后的表面制备聚四氟乙烯(PTFE)超疏水涂层。测试中采用场发射扫描电镜、接触角测试仪及电化学测试仪进行PDA/PTFE涂层分析和表征。制备的PDA/PTFE涂层表面呈现凸起结构,提高电沉积制备时间与溶液中水含量,涂层表面水接触角呈现先增加后降低的变化趋势,制备涂层中最大水接触角为160.2°±1.3°,相应涂层的表面能为5.57mN/m。胶带剥离与砂纸磨损试验表明,PDA/PTFE涂层具有较好的稳定性。污垢沉积试验表明,浸泡在50℃、70℃与90℃碳酸钙过饱和溶液12h后,与不锈钢相比,涂层抑垢率分别为64.71%、72.22%与81.25%。电化学测试表明,PDA/PTFE超疏水涂层具有较好的耐腐蚀性能,与不锈钢相比,涂层缓蚀率为95.1%。  相似文献   

13.
《应用化工》2016,(11):2102-2106
采用两步法对纳米二氧化硅进行有机无机杂化改性,首先通过异氰酸酯的桥接作用,在纳米二氧化硅的表面引入环氧树脂分子,再利用环氧基团的碱式开环反应,形成可参与交联固化的羟基,制备了表面接枝含羟基柔性链段的纳米填料,研究了纳米二氧化硅不同用量对涂层材料力学性能与耐磨性能的影响。结果表明,有机无机杂化改性后的纳米二氧化硅能与有机树脂发生化学反应,改善了无机纳米二氧化硅在涂层中的分散性,提高了有机/无机的界面相容性,从而提高了涂层的韧性和致密性。当改性纳米二氧化硅的添加量为6%时,与添加未改性纳米填料的涂层相比,其耐磨性提高了24%,拉伸强度提高了25%,断裂伸长率提高了50%,涂层的饱和吸水率降低了40%。  相似文献   

14.
通过超声辅助、氨水催化,使用十六烷基三甲氧基硅烷作为正硅酸乙酯的共前躯体,在交联剂3-缩水甘油丙基三甲氧基硅烷(GPTMS)和无交联剂下,溶胶、凝胶过程制备了疏水纳米二氧化硅。使用FT-IR、纳米粒度仪、TG-DTA等分析方法表征疏水纳米二氧化硅,测定表明该粒子直径大小集中在30~50 nm,GPTMS的添加提高了疏水纳米复合物的稳定性。水被疏水二氧化硅涂料处理后,水接触角从处理前的20°上升到93°。耐酸性评价显示疏水纳米二氧化硅涂料处理的石材具有良好的耐酸性。  相似文献   

15.
以氟树脂为原料,以纳米二氧化硅粒子为改性剂并加入助剂,采用水浴共混制备超疏水涂料。通过在玻璃板自然风干得超疏水涂层。采用傅里叶变换红外光谱仪(FT-IR)、热重分析仪(TG)和扫描电子显微镜(SEM)等分析方法对超疏水涂料涂层表面进行系统表征。讨论氟树脂、纳米二氧化硅及甲基丙烯酸甲酯(MMA)的用量对涂层疏水性能影响,探索涂层微观粗糙结构对接触角的影响,确定涂层的最佳工艺条件,获得静态接触角为151°、滚动角为4.8°的超疏水涂料。  相似文献   

16.
以三氟丙基甲基环三硅氧烷(D3F)、二甲基氯硅烷、甲基二氯硅烷、乙烯基三甲氧基硅烷(VTMS)为主要原料,通过阴离子开环聚合和硅氢加成反应合成了一系列短氟碳链含氟硅烷偶联剂。载玻片表面经纳米二氧化硅溶胶涂膜和硅烷偶联剂表面修饰得到疏水涂层。探究了不同硅烷偶联剂对于涂层疏水性、附着力、硬度、透过率等性能的影响。结果表明,同类型含氟硅烷偶联剂中氟含量越大,其修饰的涂层接触角越大;相似相对分子质量及氟含量情况下,直链型含氟硅烷偶联剂修饰的涂层疏水性优于支链型修饰的涂层。经含氟硅烷偶联剂修饰的疏水涂层中,接触角最大的是由聚合度为9的支链型含氟硅烷偶联剂(DF3)修饰的涂层,可达141.6°。疏水涂层的附着力均达1级,硬度均达H,可见光透过率高于82.9%,具有良好的自清洁性能。  相似文献   

17.
用超临界CO2快速膨胀法制备了SiO2/聚氨酯超疏水涂层。首先用十三氟辛基三乙氧基硅烷(F-硅烷)和γ-(甲基丙烯酰氧基)丙基三甲氧基硅烷(KH-570)改性纳米二氧化硅,制备出含双键的纳米二氧化硅粒子,将其分散在超临界CO2中,再利用超临界CO2快速膨胀法将其喷射到双键封端的且已添加了引发剂的聚氨酯涂层表面,通过加热,使纳米二氧化硅粒子接枝在聚氨酯涂层表面,形成稳固粗糙结构,获得了超疏水性质。研究了喷嘴温度、反应釜温度和压力、偶联剂配比、表面粗糙度对涂层疏水性的影响。结果表明:涂层的静态水接触角可达到169.1°±0.6°;在喷嘴和釜内温度都为90℃,釜内压力为16 MPa,F-硅烷和KH-570配比为1∶1,表面粗糙度为7.3 μm时,所制得涂层具有较好的超疏水性,且具有优良的耐刮伤性。该法高效环保,涂层性能优良,适于大面积制备。  相似文献   

18.
徐兵兵  黄月文  王斌 《精细化工》2019,36(10):2009-2015
为了提高基体材料的防污能力,在基体表面制备了一种无氟超疏水复合涂层。首先,使用十六烷基三甲氧基硅烷(HDTMS)对二氧化硅(SiO_2)微纳米颗粒进行疏水改性,其次,将改性后的SiO_2颗粒与有机硅烷混合,利用硅烷的水解、聚合在基体材料的表面得到一层稳定的无氟超疏水复合涂层。采用FTIR、TGA、SEM、AFM和接触角测量仪对涂层的化学组成、表面微观结构和疏水性能进行表征。结果表明:复合涂层表面具有微纳米尺度的粗糙结构,并具有优异的自清洁性和耐磨损性;未磨损前接触角达151°,磨损100周次后接触角进一步提高至161°。  相似文献   

19.
采用溶胶-凝胶法制备了二氧化硅凝胶材料,通过用六甲基二硅胺烷(HMDS)对二氧化硅凝胶材料进行后处理,进一步制备了超疏水二氧化硅复合材料。采用静态接触角(CA)、红外光谱(FT-IR)、核磁硅谱(29Si NMR)以及热重分析(TGA)对上述颗粒进行分析和表征。静态接触角结果表明,复合材料对水的接触角随着HMDS与正硅酸乙酯(TEOS)的质量比的增加而增加,在HMDS与TEOS的比例为1.5时达到最大值。复合材料的红外光谱、核磁硅谱与热重分析验证了此样品为有机-无机杂化的结构。此超疏水二氧化硅复合材料可以用于涂料漆膜罩面,赋予水性木器漆超疏水特性,接触角高达167°。  相似文献   

20.
采用3-氨丙基三乙氧基硅烷(APTES)接枝改性二氧化硅颗粒表面,通过调节APTES的接枝密度(颗粒表面每平方纳米接枝硅烷偶联剂分子的个数)定量控制二氧化硅颗粒在石蜡/水界面上的接触角。结果表明:随着APTES在二氧化硅颗粒表面接枝密度的增加,颗粒由超亲水转变为疏水,在油水界面的接触角从15°增加到116°;改性颗粒在石蜡/水界面形成固态膜,当石蜡低温固化后,改性颗粒在石蜡相中的部分被掩盖;相比于未改性颗粒,改性后的颗粒在石蜡表面形成的包裹层更加紧密有序。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号