首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对高含氮水体往往存在碳源不足,需要补充碳源的问题,以农林废弃物油菜秸秆作为外加碳源,对不同高含氮的水体进行了生物反硝化脱氮实验研究。结果表明,油菜秸秆在NO_3~--N含量相对较低的水体情况下脱氮效果较好,可以作为良好的缓释碳源,当NO_3~--N的质量浓度为20 mg/L时,脱氮效果最好,NO_3~--N负荷为31 mg/(L·d);当NO_3~--N的质量浓度大于30 mg/L时,因秸秆释碳不足,NO_3~--N去除率减小。不同浓度NO_3~--N水体的NO_3~--N去除率差别较大,但脱氮负荷较为接近,说明高含量NO_3~--N水体的脱氮效果主要与秸秆释碳量有关,受碳源影响。  相似文献   

2.
针对废水处理过程中反硝化阶段碳源不足需要外加有机物的情况,通过驯化培养以Fe~(2+)为电子供体的硝酸盐型厌氧铁氧化菌(NAIOM),接种至普通反硝化污泥中(ASBR反应器),研究了NAIOM污泥及外加Fe~(2+)对反硝化脱氮效果的提升。结果表明:反应器在接种NAIOM污泥和投加Fe~(2+)后,碳氮比较高时NO_3~--N去除率变化不大,随着碳氮比的不断降低NO_3~--N去除率提升逐渐明显,在碳氮比为3.42、 2.28、 1.71时分别为90.20%、85.12%、 78.86%,较普通反硝化污泥不投加Fe~(2+)时的NO_3~--N去除率分别提升了17.80%、 24.59%、 28.70%,接种NAIOM污泥协同外加Fe~(2+)对提高低碳氮比废水的NO_3~--N去除率效果显著。  相似文献   

3.
分别采用零价铁、反硝化污泥及零价铁+反硝化污泥的系统处理含NO_3~--N的废水,探讨零价铁的添加对反硝化系统脱氮效果的影响及系统中发生的主要反应。结果表明,零价铁系统对废水中的NO_3~--N无去除效果;当零价铁+反硝化污泥系统对废水中NO_3~--N的去除率达到100%时,反硝化污泥系统对废水中的NO_3~--N去除率仅为60.1%。零价铁+反硝化污泥系统中主要发生零价铁参与的氧化还原反应及微生物参与的生物反硝化反应。  相似文献   

4.
针对某电镀污水处理厂物化出水,采用活性污泥法+后置反硝化曝气生物滤池(BAF)工艺进行脱氮深度处理中试研究,结果表明,活性污泥法单元COD和NH3-N平均去除率分别达49.37%和69.30%。反硝化BAF单元NO_3~--N和TN平均去除率分别达90.47%和60.42%,出水NO_3~--N的质量浓度基本在10 mg/L以内;停留时间对反硝化BAF脱氮效果影响不大,43 min出水时NO_3~--N容积负荷可达1.5 kg/(m3·d);去除单位氮(N)的碳源消耗量和碱度增加量与理论值相近,反硝化BAF运行成本(碳源部分)为0.41元/t,折合去除每10 mg/L的N运行成本较低,为0.08元/t左右。  相似文献   

5.
以稻壳为反硝化碳源,研究了稻壳的营养组成、微观形貌、孔隙结构、在海水中的释碳速率以及作为反硝化碳源在海水中的脱氮效果。结果表明,稻壳中含有能被微生物利用的粗纤维、淀粉和粗蛋白等,总有机碳达到58%以上;稻壳含有大量亲水官能团,表面粗糙且拥有大量孔隙结构,非常利于微生物附着生长。以稻壳为反硝化碳源,海水中硝酸盐去除率可达59%,且具备较好的持续供碳能力,可满足其作为碳源被微生物持续利用的需求。  相似文献   

6.
以自制复合铁碳填料为载体,建立物化-生物耦合脱氮体系,考察了HRT、DO含量、进水pH对低C/N(COD/ρ(TN)=1.5:1)污水脱氮的影响,并通定量了物化作用对脱氮的贡献率。结果表明,在耦合体系中,NH_4~+-N通过氨氧化菌和硝化菌的作用生成NO_3~--N和NO_2~--N,NO_3~--N和NO_2~--N进入生物膜内部,自养反硝化菌以载体原电池反应所产生的[Fe~(2+)]、[H]为电子供体实现反硝化脱氮,其适宜运行条件为:HRT为4.0 h,DO的质量浓度(2.0±0.1)mg/L,进水pH为7.0±0.1,此时污水COD、NH_4~+-N、NO_3~--N、TN去除率分别可达94.6%~97.3%、82.1%~83.6%、92.1%~94.7%、89.3%~92.5%。适宜的HRT低于其它同步硝化反硝化脱氮过程。反应器内反硝化所需电子37.9%由载体物化反应供给,消除了传统生物脱氮过程对有机碳源的依赖,源缩短了脱氮所需停留时间。故该耦合体系可实现低C/N污水的高效深度脱氮。  相似文献   

7.
针对污水处理厂二级生化出水硝酸盐氮浓度高的问题,选用高效硫自养反硝化菌,构建以生物陶粒为填料的自养反硝化滤池,模拟生活污水二级生化出水,调节运行参数,考察脱氮效果。结果表明,滤池经过10 d 200 mg/L NO_3~--N培养液的间歇培养和15 d 100 mg/L NO_3~--N连续进水驯化后挂膜成功,NO_3~--N去除率稳定在90%以上;在HRT为12 h下,滤池对进水NO_3~--N质量浓度为30 mg/L去除效果最好,NO_3~--N和TN去除率分别达到96%、93%,出水NO_2~--N含量1 mg/L以下,但硫酸盐浓度为500~600 mg/L;进水NO_3~--N质量浓度30 mg/L,HRT为2~12 h时,滤池对NO_3~--N去除率均可达85%以上,HRT2 h脱氮性能下降,最佳HRT为2 h;滤池反硝化脱氮率沿填料厚度的增加而逐渐增加,HRT为12 h时在填料高度5 cm处即可达到70%的NO_3~--N去除率。  相似文献   

8.
采用甘蔗渣、木屑等植物废弃物作为固体碳源,研究了温度、时间、固液比、粒径和搅拌强度等对碳源释碳能力的影响。利用SBR工艺研究这两种固体碳源对废水生物反硝化作用的影响。结果表明,固液比对释碳能力影响最明显,其次是时间。两种固体碳源投加后,随着投加量的增加,生物反应中缺氧段脱氮率、总脱氮率以及COD的去除率都上升。木屑作为碳源时,三种去除率最高。分别为42%,86.74%,89.20%;甘蔗作为碳源时,三种去除率最高分别为70.15%、95.53%、78.40%。  相似文献   

9.
采用聚乙烯醇(PVA)、海藻酸钠、谷壳、反硝化细菌等利用包埋固定化技术制备成3种不同成分的固定化反硝化细菌联合固体碳源的小球,分别在不同的条件下研究外加碳源和固定化反硝化菌对脱氮效果的影响。结果表明,在有外加碳源时,固体碳源小球能提高污水中的C/N,在相同的条件下,投加和未加含有固体碳源的小球对NO_3~--N的去除率分别达到95.22%和57.89%;在小球中固定化微生物时,其去除性能更好,在相同的条件下,固定和未固定微生物的小球对NO_3~--N的去除率分别为95.22%和87.11%。2种情形下的优化温度和p H分别为30℃和7.5。  相似文献   

10.
通过批次试验考察了实际工业有机废水的碳源性质和COD/NO_3~--N对硝酸盐还原途径的影响。研究结果表明,木薯酒糟中含有大量的大分子易发酵有机物(如碳水化合物和蛋白质等),更易发生异化硝酸盐还原为铵(DNRA)过程;而葡萄糖合成废水和木薯酒精废水厌氧出水中,硝酸盐还原途径主要是通过反硝化进行的。虽然基质不同,但COD/NO_3~--N对硝酸盐还原途径的影响却呈现出相同的规律,即随着COD/NO_3~--N增大,反硝化所占的比例逐渐减小,DNRA占的比重逐渐增大。  相似文献   

11.
为进一步提高反硝化(DN)池的反硝化效能,分别考察了进水温度、HRT、C/N以及反洗周期等因素对前置反硝化曝气生物滤池(BAF)组合工艺DN池的脱氮效能的影响。结果表明,反硝化效能会随温度的升高而升高,在25℃时NO_3~--N去除率为91.3%;水力停留时间对反硝化作用的影响主要原于HRT的减少缩短了反硝化作用的反应时间,从而使反硝化过程中所消耗的COD降低;COD/ρ(NO_3~--N)小于15时,COD/ρ(NO_3~--N)是DN池脱氮效能的决定性因素,当COD/ρ(NO_3~--N)大于15时,NO_3~--N的含量变化趋于平缓;同一反洗周期内DN池的反硝化效能会持续增加,下一反洗周期开始前NO_3~--N的质量浓度降低至1.9 mg/L,此时脱氮效能达到最大。  相似文献   

12.
选取淀粉、葡萄糖、丙酸钠、乙酸钠4种碳源,在m(COD)∶m(NO_3~--N)=10条件下使用人工配水,采用间歇实验进行厌氧同时反硝化产甲烷的研究。结果显示,丙酸钠作碳源的体系有利于反硝化阶段快速进行,22 h时NO_3~--N去除率最高为95.21%;乙酸钠作碳源的体系有利于产甲烷阶段快速进行,反应结束时COD去除率最高为93.7%。4种碳源均有NO_2~--N和NH_4~+-N中间产物出现,但NO_2~--N含量升高后又迅速降低,并未对反应造成影响。葡萄糖和淀粉为碳源时有少量NO_3~--N被异化为NH_4~+-N。  相似文献   

13.
以脱氮副球菌(Paracoccus denitrificans)为菌种来源,可生物降解聚合物PCL为有机碳源和生物膜载体,对养殖水体的硝酸盐氮进行脱除实验。结果表明,以特定反硝化菌株接入反硝化装置,可以有效去除硝酸盐氮和亚硝酸盐氮。经过15 d的驯化,60 d的反硝化实验,硝酸盐氮的去除率达到79%,且无亚硝态氮的明显累积;扫描电镜结果表明,固相碳源表面形成的凹陷可为脱氮副球菌提供碳源及载体,具有较好的生物利用性。以PCL为碳源,可以提高养殖水体中的C/N,且操作简单,在经济上具备一定的可行性。  相似文献   

14.
<正> 一、前言单级污泥生物脱氮系统的原理是让废水交替处于好氧和缺氧的环境下,有机氮和氨氮在好氧区分解、硝化,转化为硝酸盐;硝酸盐在缺氧区反硝化,还原为氮气。其优点无需投加外碳源,废水中有机碳作为反硝化的氢接受体(碳源),用硝酸盐代替氧,减少了有机碳好氧降解的能耗。尤其当废水中氨氮含量高、缓冲能力弱时,还可通过反硝化,弥补因硝化而破坏的部分碱度,节省调整PH的化学药品。  相似文献   

15.
针对己内酰胺废水脱氮除磷效率低的问题,采用厌氧-好氧-缺氧(AOA)序批式反应器处理己内酰胺废水,并进一步研究了Fe强化去除己内酰胺废水的有机物及氮磷。结果表明,较缺氧-好氧工艺,AOA工艺能较好实现己内酰胺废水碳氮磷去除。Fe促进AOA工艺脱氮除磷,且当Fe剂量为10.0 g/L时,COD、TN和溶解性磷酸盐(SOP)的去除率分别为93.1%,82.6%和93.4%,显著高于无Fe组别。Fe存在提高厌氧期微生物对己内酰胺废水COD的消耗,且促进NO_2~--N和NO_3~--N转化。当Fe剂量为10 g/L,NO_2~--N、NO_3~--N的最大质量浓度分别为12.3、16.5 mg/L。Fe为反硝化过程提供电子强化脱氮过程。Fe同时促进SOP的释放及好氧吸收速率,提高了生物除磷关键酶的活性。  相似文献   

16.
针对低C/N废水脱氮效率低的现状,建立了微曝气生物膜反应器,分析了启动期微气泡曝气生物膜反应器污染物去除特征,探究了温度对微气泡曝气生物膜反应器脱氮效率的影响并揭示相关机制。结果表明,反应器启动稳定后COD、NH_4~+-N和TN的去除率分别提高至92.3%、92.5%和71.5%。温度能影响生物脱氮效率,且35℃时COD去除率最高,可高达92.3%~93.4%。温度同时影响硝化及反硝化过程,且温度升高有利于促进NO_2~--N的积累与NO_3~--N的反硝化。温度升高降低了反应器内污泥胞外聚合物的含量。当温度为35℃时,脱氮过程关键酶活性显著高于15℃;温度升高利于硝化及反硝化过程关键微生物的丰度。  相似文献   

17.
在SBR反应器中以乙酸钠为碳源、NO_3~--N为电子受体成功富集了反硝化聚糖菌,并采用批次实验进一步考察了进水C/N比(3.3,6.7,10)、电子受体(NO_3~--N、NO_2~--N)、碳源类型(乙酸钠、葡萄糖)对反硝化聚糖菌活性的影响及内碳源转化特性。实验结果表明,进水C/N比越高,系统NO_x~--N去除率越高,厌氧段合成PHB越多,但进水C/N比过高会导致普通反硝化菌占优势,影响内碳源反硝化效率,进水C/N比为6.7较为合适;以NO_3~--N为电子受体长期培养的DGAOs系统未经NO_2~--N驯化,对NO_2~--N同样具有良好的反硝化性能,在投加与NO_3~--N相同浓度的NO_2~--N后,系统NO_x~--N去除率达89.6%;当以葡萄糖为碳源时,DPAOs在厌氧段合成的PHB的量仅为以乙酸钠为碳源时合成PHB量的79.5%,且厌氧段葡萄糖利用率仅为72.8%,远远小于乙酸钠的利用率。  相似文献   

18.
循环水养殖系统中反硝化技术研究进展   总被引:1,自引:0,他引:1  
介绍了循环水养殖系统及其系统中NO_3~--N的产生及危害,叙述了自养和异养反硝化脱氮技术的原理,并总结了2种类型反硝化技术去除NO_3~--N的影响因素以及工艺。认为随着分子生物学的发展,菌体的群落变化、代谢过程以及氮的来源和去向会更加明晰,新型反硝化细菌如好氧反硝化菌将被发现。如果可以在同一个反应器内实现硝化反硝化,不仅可以简化反应器程序,而且降低RAS系统运行成本,是未来反硝化在养殖水体脱氮处理中的一个重要方向。  相似文献   

19.
采用模拟废水,评价一种复合碳源的脱氮效果,结果显示,该复合碳源在反硝化过程中,存在轻微的亚硝酸盐氮积累和氨氮的生成,最高积累量为ρ(亚硝酸盐氮)=0.08 mg/L,最高生成量为ρ(氨氮)=4.51 mg/L;全部反应过程中m(C)∶m(N)=5.18~10.24;该碳源对总氮和硝酸盐氮均表现良好的去除能力,总氮的去除率超过90%;反硝化过程t<205 min,出水COD、ρ(总氮)和ρ(氨氮)均达到GB 18918—2002《城镇污水处理厂污染物排放标准》一级A标准。  相似文献   

20.
利用可生物降解多聚物(BDPs)材料固体颗粒作为反硝化过程的碳源和生物膜载体,进行低碳氮质量浓度比含盐废水的生物脱氮研究,考察碳源、温度、停留时间对反硝化脱氮效果的影响及使用前后可生物降解多聚物颗粒的变化。结果表明,实验条件下,可生物降解多聚物材料颗粒可以作为碳源使用,总氮去除率大于90%;温度对反硝化脱氮影响较大,15℃时的反硝化速率较25℃时降低30%;使用前后固体颗粒质量和表面均发生较大变化,证明其可作为碳源被生物利用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号