首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Autothermal reforming (ATR) of methane over the synthesized catalysts of 10Ni-2La/γ-Al2O3, 10Ni-2Ce/γ-Al2O3, 10Ni-2Co/γ-Al2O3 was investigated in the temperature range of 600-800 oC for the hydrogen production. The sequence of 2 wt% metal loading on nickel alumina support in relation to their catalytic performance was observed as La>Ce>Co. The excellent activity and selectivity of 10Ni-2La/γ-Al2O3 was superior to other catalysts owing to little carbon deposition (~2.23 mg coke/gcath), high surface area and good dispersion and stability in the alumina support. The reforming of methane was inferred to be initiated by the decomposition of hydrocarbon at the inlet zone, preceded by the reforming reactions in the catalyst bed. Our result shows that it can be possible to achieve the H2/CO ratio optimal to the GTL processes by controlling the O2/CH4 ratio of the feed inlet. The addition of oxygen to the feed inlet enhanced conversion efficiency substantially; probably, it favors the re-oxidation of carbonaceous residues formed over the catalyst surfaces, avoiding the catalyst deactivation and hence promoting catalyst stability.  相似文献   

2.
A major problem of using Ni-based catalysts is deactivation during catalytic cracking and reforming, lowering catalytic performance of the catalysts. Modification of catalyst with alkali-loading was expected to help reduce coke formation, which is a cause of the deactivation. This paper investigated the effects of alkali-loading to aluminasupported Ni catalyst on catalytic performance in steam reforming of biomass-derived tar. Rice husk and K2CO3 were employed as the biomass feedstock and the alkali, respectively. The catalysts were prepared by a wet impregnation method with γ-Al2O3 as a support. A drop-tube fixed bed reactor was used to produce tar from biomass in a pyrolysis zone incorporated with a steam reforming zone. The result indicated that K2CO3/NiO/γ-Al2O3 is more efficient for steam reforming of tar released from rice husk than NiO/γ-Al2O3 in terms of carbon conversion and particularly hydrogen production. Effects of reaction temperature and steam concentration were examined. The optimum temperature was found to be approximately 1,073 K. An increase in steam concentration contributed to more tar reduction. In addition, the K2CO3-promoted NiO/γ-Al2O3 was found to have superior stability due to lower catalyst deactivation.  相似文献   

3.
The metal oxides modified Ni/γ-Al2O3 catalysts for glycerol steam reforming were prepared by impregnation. Characterization results of fresh catalysts indicated that the molybdates modification abated the acidity and the stronger metal-support interaction of Ni/γ-Al2O3 catalysts, leading to a stable catalytic activity. Especially, NiMoLa-CaMg/γ-Al2O3 (NiMoLa/CMA) catalyst exhibited no deactivation along with glycerol complete conversion to stable gaseous products containing 69% H2, 20% CO and 10% CO2 during time-on-stream of 42 h. TPO of spent Ni/γ-Al2O3 catalysts modified by different components showed that the carbon deposit on acidic sites and NiAl2O4 species led to catalysts deactivation. A lower reforming temperature and a higher LHSV and glycerol content were helpful to the production of syngas from GSR over NiMoLa/CMA; the reverse conditions would improve the formation of H2.  相似文献   

4.
A catalyst of 10% Ni/γ-Al2O3 for CO2/CH4 reforming was prepared and characterized by TPR, TPD, XPS, XRD and activity measurements. XPS and TPR showed that Ni mainly exists in the form of NiAl2O4 in the calcined catalyst and is hard to reduce below 650°C, indicating a strong interaction between metal and support. Reduction of the calcined catalyst results in fine particles of Ni0, with an average diameter of about 20 nm as determined by XRD. The uptake of H on the reduced catalyst measured by H2-TPD is 4.2–4.6 mole per mole of Ni species and does not depend on the reduction degree of Ni species. This provides a convincing piece of evidence for the occurrence of hydrogen spillover in the reduced catalyst. Only reduced catalysts present good activity, but the degree of nickel reduction has almost no effect on the reforming activity. This seems to suggest that Ni0 is vital for the reforming activity, but γ-Al2O3 is also involved in CO2/CH4 reforming and contributes even more. Based on the mechanism proposed by Bradford et al. and on our observations, a mechanistic model has been proposed to elucidate the role of γ-Al2O3 in CO2/CH4 reforming.  相似文献   

5.
A series of NiMoNx/γ-Al2O3 catalysts with various Ni contents were prepared by a topotactic reaction between their corresponding precursors NiO·MoO3/γ-Al2O3 and NH3. The catalysts were characterized using BET, XRD, and H2-TPR techniques, and the HDN activity of pyridine over these catalysts was tested. XRD patterns show that metallic Ni, Mo2N and a new phase of Ni3Mo3N exist in NiMoNx/γ-Al2O3 catalyst. H2-TPR studies indicate that the presence of Ni lowers the reduction temperature of the passivated surface layer of nitrided Mo/γ-Al2O3. The HDN activity for NiMoNx/γ-Al2O3 is much higher than that for NiMoSx/γ-Al2O3. The nitride catalyst with about 5.0 wt% NiO and 15.0 wt% MoO3 in its precursor has the highest specific denitrogenation activity. The appearance of Ni3Mo3N and the synergy between metallic Ni and nitrided Mo are probably responsible for the high activity of NiMoNx/γ-Al2O3 catalyst. The role of Ni in HDN reaction was also investigated. The activities decrease in the order: reduced Ni/γ-Al2O3≥nitrided Ni/γ-Al2O3>partially reduced Ni/γ-Al2O3 and sulfided Ni/γ-Al2O3.  相似文献   

6.
This work continues a cycle of studies aimed at developing new approaches to the regeneration of coked bimetallic heterogeneous catalysts. The activities of three Ru-125 (Pt-Re/γ-Al2O3) industrial reforming catalyst samples (fresh catalyst (A), catalyst removed from an industrial reactor (B), and sample B after treating it with ozone in supercritical carbon dioxide (SC-CO2) (C)) are been compared in the reforming of n-heptane. It is established that sample B is deactivated appreciably: the conversion of n-heptane and the yield of reforming products are generally much lower than on the fresh catalyst. After treating it with an O3/SC-CO2 mixture, the conversion of n-heptane not only returns to the level of fresh sample A, but also exceeds it by a factor of 1.2. The qualitative composition of the products obtained on samples A, B, and C is nearly the same, but there are some changes in the quantitative ratio of certain products. Regeneration with ozone is found to be promising for further development and scaling.  相似文献   

7.
The catalytic activity of 8.8 wt Ni/MgO–AN prepared from alcogel derived MgO was studied for the dry reforming of methane under high pressure (1.5 MPa). The catalyst showed a self-stabilization process during the reaction that lasted for 50 h, in which the catalytic activity decreased with increasing the reaction time on stream (TOS) up to 12 h, and then became stabilized thereafter. The activity decline during the initial 12 h of the reaction was found closely related to an increase in the amount of carbon deposits on the catalyst, which also became stabilized after the catalyst had served the reaction for 12 h. Comprehensive characterizations of the coked catalyst with Temprature programmed hydrogenation (TPH), X-ray photoelectron spectroscopy (XPS) and X-ray diffractometer (XRD) techniques revealed two kinds of carbon deposits (-carbon and -carbon) on the used catalyst. The -carbon deposits were found to be produced from CH4 decomposition while the -carbon deposits from CO disproportionation. It was revealed that the accumulation of -carbon deposits was a key cause for the activity decline and the self-stabilized catalysis during the initial 12 h of the high-pressure reaction. Moreover, it was also observed that an unavoidable sintering of metallic Ni particles from 6.5 to 11 nm, which happened within the very first hour of the reaction, was not directly related to the catalyst stability.  相似文献   

8.
A bifunctional CaO-Zr/Ni (13, 18, and 20.5 wt% NiO) sorbent–catalyst was developed using the wet-mixing/sonication technique and applied for hydrogen production by sorption-enhanced steam methane reforming (SESMR), an intensified process that integrates hydrogen production with CO2 capture. The material was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and N2 physisorption (BET). CO2 sorption efficiency of the developed materials was evaluated during 25 CO2 sorption/regeneration cycles. The prepared sorbent–catalysts were then applied in the SESMR during 10 reaction cycles. The results showed that the bifunctional sorbent–catalyst with 20.5 wt% NiO loading presented the most suitable activity. The H2 yield of ∼91% at the end of the 10th SESMR cycle is considerably higher than equilibrium H2 yield that could be obtained by traditional steam methane reforming.  相似文献   

9.
采用负载型Rh/MgO/γ-Al2O3催化剂研究了毫秒级甲烷蒸汽重整过程,在水碳比为1和3的条件下,详细考察了反应温度、空速和催化剂Rh含量对反应转化率和选择性的影响。研究结果表明,Rh/MgO/γ-Al2O3催化剂在毫秒级操作条件下具有良好的催化性能,使用5%(质量分数)Rh催化剂,在水碳比3、反应温度1150K、空速641.11 L·(gcat)-1·h-1时,CH4转化率约90%,CO2选择性约20%,毫秒级接触时间反应行为即可接近热力学平衡。高温有利于毫秒级甲烷蒸汽重整过程。  相似文献   

10.
Rh/MgO/γ-Al2O3上的毫秒级甲烷蒸汽重整过程   总被引:1,自引:0,他引:1  
阳宜洋  丁石  金涌  程易 《化工学报》2009,60(8):1981-1987
采用负载型Rh/MgO/γ-Al2O3催化剂研究了毫秒级甲烷蒸汽重整过程,在水碳比为1和3的条件下,详细考察了反应温度、空速和催化剂Rh含量对反应转化率和选择性的影响。研究结果表明,Rh/MgO/γ-Al2O3催化剂在毫秒级操作条件下具有良好的催化性能,使用5%(质量分数)Rh催化剂,在水碳比3、反应温度1150 K、空速641.11 L•(g cat)-1•h-1时,CH4转化率约90%,CO2选择性约20%,毫秒级接触时间反应行为即可接近热力学平衡。高温有利于毫秒级甲烷蒸汽重整过程。  相似文献   

11.
《Catalysis communications》2004,5(11):671-675
Steam reforming of methanol (SRM) was investigated over Cu/CeO2/γ-Al2O3 catalysts with different compositions in a parallelized 10-channel micro-structured reactor. The catalytic activity was found to be strongly dependent on the copper loading. The parallel screening result was tentatively discussed with surface analysis characterization results and previous proposals. A reaction mechanism is proposed to rationalize the catalytic activity data and characteristics of the catalysts, which supposes that the copper/ceria interfacial area (partially oxidized copper nanoparticle and defective ceria) is the active site for SRM. The oxygen reverse spillover from ceria to copper is suggested to be involved in the catalysis cycle.  相似文献   

12.
The Ni/Al2O3–MgO nanocatalyst with Al/Mg ratio of 1.5 was prepared successfully using sonochemistry method and shown high activity and stability in dry reforming of methane. XRD, BET, FESEM, TEM and EDAX-dot mapping techniques have been used for nanocatalyst characterization. XRD analysis confirmed the formation of MgO and NiO cubic phases. According to the FESEM micrographs, nanostructure grains with uniform surface size distribution have been observed in of the synthesized nanocatalyst. The TEM micrographs showed that ultrasound-assisted preparation method induced uniform morphology without agglomeration of particles. The activity of synthesized nanocatalyst could reach thermodynamic equilibrium conversions and H2/CO ratios.  相似文献   

13.
采用沉积-沉淀法制备了一系列不同焙烧温度的二甲醚水蒸气重整制氢催化剂2Cu-1Ni/5g-Al2O3(摩尔比),考察了焙烧温度对催化剂2Cu-1Ni/5g-Al2O3的结构及催化性能的影响,并运用N2吸附-脱附(BET)、H2程序升温还原(H2-TPR)、X射线衍射(XRD)等手段对催化剂进行了表征与分析。结果表明,500 ℃焙烧的催化剂BET比表面积及孔容、孔径适中。随着焙烧温度的升高,以尖晶石态存在的铜组分比例逐渐增加,金属Cu的粒径也从12.6 nm增至33.2 nm。适当的焙烧温度可保证金属和载体之间的强度适中的作用力,从而保证催化剂具有较优的活性和稳定性。催化剂活性随着焙烧温度的增加先升高后减小,较优的焙烧温度为500 ℃。  相似文献   

14.
The addition of Y2O3 to Ni/α-Al2O3 catalysts was investigated by BET surface area measurements, hydrogen chemisorption, X-ray diffraction, UV–vis diffuse reflectance spectroscopy, X-ray fluorescence, temperature programmed reduction, temperature programmed oxidation and cyclohexane dehydrogenation. Autothermal reforming experiments were performed in order to evaluate the methane conversion and proceeded through an indirect mechanism consisting of total combustion of methane followed by CO2 and steam reforming generating the synthesis gas. The Y2O3·Al2O3 supported catalysts presented better activity and stability in autothermal reforming reaction. Temperature programmed oxidation analysis demonstrated that the addition of Y2O3 resulted in a change of the type or the location of coke formed during reaction. None of the prepared catalyst presented deactivation by sintering under the tested conditions. The improved stability of supported catalysts Y2O3·Al2O3 was the result of minimizing the formation of coke on the surface of nickel particles.  相似文献   

15.
Three different Mn-promoted Ni/γ-Al2O3 catalysts, Mn/Ni/γ-Al2O3, Mn-Ni/γ-Al2O3 and Ni/Mn/γ-Al2O3, were prepared and applied to the steam reforming of liquid petroleum gas (LPG) mainly composed of propane and butane. For comparison, Ni/γ-Al2O3 catalysts containing different amount of Ni were also examined. In the case of the Ni/γ-Al2O3 catalysts, 4.1 wt% Ni/γ-Al2O3 showed the stable catalytic activity with the least amount of coke formation. Among the various Mn-promoted Ni/γ-Al2O3 catalysts, Mn/Ni/γ-Al2O3 showed the stable catalytic activity with the least amount of coke formation. It also exhibited a similar H2 formation rate compared with Ni/γ-Al2O3. Several characterization techniques—N2 adsorption/desorption, X-ray diffraction (XRD), CO chemisorptions, temperature-programmed reduction (TPR), X-ray photoelectron spectroscopy (XPS) and CHNS analysis—were employed to characterize the catalysts. The catalytic activity increased with increasing amount of chemisorbed CO for the Mn-promoted Ni/γ-Al2O3 catalysts. The highest proportion of Mn4+ species was observed for the most stable catalyst.  相似文献   

16.
《Catalysis communications》2001,2(11-12):369-374
Platinum and Platinum–tin bimetallic catalysts supported on alumina were prepared by co-impregnation of both metallic precursors on the support and used as catalysts for the oxidation of SO2. Platinum dispersion was determined by means of H2–O2 titration. Tin addition (1 and 2 wt%) only slightly decreased the exposed platinum atoms suggesting that tin is mainly over the support. At temperatures lower than 300 °C, SO2 did not react with oxygen. Nevertheless, when the temperature was increased, the SO2 oxidation began. The ignition temperatures for SO2 oxidation (taken at 50% conversion) were 345 °C for 1% Pt/Al2O3 and 520 °C for 1% Pt–2% Sn/Al2O3. The strong displacement on activity suggests that tin plays an important role as inhibitor of the SO2 oxidation reaction.  相似文献   

17.
CO2 reforming of methane has been studied over Pt/Al2O3 model catalysts in a temperature range of 600–800 °C using steady-state and transient methods (Transient Response Method (TRM) and DRIFT-MS). Pt-supported catalysts were prepared using two different alumina (γ-Al2O3(S) Sasol-Puralox and a synthesized γ-Al2O3(N) with nanofibrous structure). Catalysts and supports were characterized by conventional methods (XRD, TEM, ABET, XPS) before and after reaction. Pt0 species are present in the catalysts, with a higher relative contribution for the catalyst that has a nanostructured support. Pt/γ-Al2O3(N) catalyst presented the best performance in reactivity and showed a low rate of carbon formation and a minimal water production. From TRM and DRIFT-MS results it can be concluded that, when CO2 and CH4 are fed separately into the reaction system, they are activated over the catalytic surface. Besides, when both reactants are fed contemporaneously the presence of CHX species promotes the CO2 activation that is responsible for the reforming reaction.  相似文献   

18.
19.
We report a plasma-assisted CO2 hydrogenation to CH3OH over Fe2O3/γ-Al2O3 catalysts, achieving 12% CO2 conversion and 58% CH3OH selectivity at a temperature of nearly 80°C atm pressure. We investigated the effect of various supports and loadings of the Fe-based catalysts, as well as optimized reaction conditions. We characterized catalysts by X-ray powder diffraction (XRD), hydrogen temperature programmed reduction (H2-TPR), CO2 and CO temperature programmed desorption (CO2/CO-TPD), high-resolution transmission electron microscopy (HRTEM), scanning transmission electron microscopy (STEM), x-ray photoelectron spectroscopy (XPS), Mössbauer, and Fourier transform infrared ( FTIR). The XPS results show that the enhanced CO2 conversion and CH3OH selectivity are attributed to the chemisorbed oxygen species on Fe2O3/γ-Al2O3. Furthermore, the diffuse reflectance infrared Fourier transform spectroscopy (DRIFTs) and TPD results illustrate that the catalysts with stronger CO2 adsorption capacity exhibit a higher reaction performance. In situ DRIFTS gain insight into the specific reaction pathways in the CO2/H2 plasma. This study reveals the role of chemisorbed oxygen species as a key intermediate, and inspires to design highly efficient catalysts and expand the catalytic systems for CO2 hydrogenation to CH3OH.  相似文献   

20.
Cerium modified and chromium-based catalysts using nano-γ-Al2O3 as the carrier were prepared via incipient wetness impregnation method and investigated for the catalytic combustion of methane (CH4). The Cr-based catalysts promoted with 3 wt.% Ce displayed the most effective catalytic activity among all catalysts investigated. In addition, Ce significantly improved the catalytic performance of CH4 combustion by increasing the amount of reaction site [CrO4]ads species on the surface of Cr-based catalysts. Introduction of Ce content also restrained the deactivation of catalysts at high calcination temperature. Cr-based catalysts modified with cerium seem to be a promising cheap and low-temperature catalyst for CH4 combustion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号