首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The cooking quality of pasta based on soft wheat flour and supplemented with three percentages of oat flour was studied. Results showed that oat flour modified deeply the cooking quality of spaghetti in comparison with samples based on only soft wheat flour. These effects were attributed to both starch‐lipid complex formation and presence of β‐glucans that weak gluten network. An increase in optimal cooking time with increase in oat percentages was observed (480 vs. 630 min). Samples enriched with oat flour showed a good‐quality cooking total organic matter (TOM values ranged from 1.4 to 2).  相似文献   

2.
3.
This study assessed physicochemical parameters of high fibre and gluten-free breads made with teff and associated flours. Four breads samples were developed: wheat flour (T1), teff flour (T2), teff flour + cassava starch + rice flour (T3 and T4). Hedonic evaluation of sensory attributes characterising the samples was performed by coeliac and non-coeliac subjects. Breads made with different percentages of teff flour showed huge amount of total and insoluble fibres. The wheat bread presented the highest values for pH and the texture parameters analysed, except for crumb hardness and elasticity. The sensory analysis showed that all samples made with teff were well accepted by coeliac and non-coeliac subjects. Purchase intention and the acceptability index suggested a potential market success for the developed products. Teff flour showed promising use for its technological and nutritional values as well as sensory properties, supporting the hypothesis that it is possible to develop new gluten-free bakery products without decreasing consumers’ satisfaction.  相似文献   

4.
The study was conducted on the effect of the addition of common wheat bran on the chemical composition, physical properties, cooking quality and sensory traits of durum wheat pasta. The pasta was produced on an industrial scale, applying an addition of common wheat bran at doses ranging from 20 to 40%. The products obtained were compared to the pasta from whole‐grain durum wheat flour, produced under identical conditions and with commercially available whole‐grain durum wheat pasta. The increase in the content of wheat bran in the pasta caused a significant increase (Duncan test, P ≤ 0.05) of the content of protein, lipids, ash and total dietary fibre (TDF). The application of 25–30% addition of common wheat bran allowed obtaining the products which are as rich in dietary fibre as the pasta prepared at the same technological parameters from whole‐grain durum flour. The pasta containing up to 30% of bran was characterised with lower losses of dry mass and higher resistance to overcooking, in comparison with the pasta made of whole‐grain durum. Simultaneously, the products had very good sensory quality.  相似文献   

5.
Egg white protein and soy protein were incorporated into a banana and cassava flour blend (75:25) to produce gluten-free pasta. The objectives of study were to investigate the effects of the different protein sources on the physico-chemical properties of gluten-free pasta. The levels of protein inclusion were 0%, 5%, 10% and 15% of composite flour (w/w) for each type of protein. Pasta made from 100% durum wheat semolina was used as controls. The protein fortification affected the total starch, resistant starch and protein content of gluten-free pasta compared to semolina pasta. No significant effects of soy/egg white protein addition were found in either insoluble or soluble dietary fibre content. Cooking properties of pasta (optimum cooking time, swelling index, water adsorption index and cooking loss) and texture properties (firmness and extensibility) were affected by the level of protein addition and the type of protein. Results showed the utilisation of 25% cassava flour and protein inclusion have a promising application in gluten-free pasta production.  相似文献   

6.
The effects of adding egg albumen or whey proteins to pasta made from parboiled rice flour (PR) were investigated. Pasta quality was evaluated in terms of color, furosine content, and cooking properties (water absorption, cooking loss, and consistency at the optimal cooking time). The surface heterogeneity of the cooked and uncooked materials was studied, and some starch properties (pasting properties and starch susceptibility to α-amylase hydrolysis) were assessed, along with the features of the protein network as determined by conditional solubility studies and with ultrastructural features of the cooked products. Egg albumen improved pasta appearance and gave a product with low cooking loss, firmer, and nutritionally more valuable than the other ones. In albumen-enriched pasta, small starch granules appear homogeneously surrounded by a protein network. In the uncooked product, the protein network is stabilized mostly by hydrophobic interactions, but additional disulfide interprotein bonds form upon cooking. Thus, addition of 15 % liquid albumen to PR results in significant improvement of the textural and structural features of rice-based gluten-free pasta.  相似文献   

7.
Bread is a major staple food consumed daily in all parts of the world. A significant part of the human population cannot tolerate gluten, a storage protein found in wheat, rye and barley, and therefore, products made from alternative cereals are required. During this study, the bread-making potential of seven gluten-free flours, wheat and wholemeal wheat flour was compared. Fermentation potential of the different flours was determined, showing that dough development height of gluten-free and wholemeal wheat samples was lower than for wheat and oat flour. Apart from standard bread quality parameters such as loaf-specific volume and physical crumb texture, also water activity and shelf life have been determined. The shelf life of gluten-free breads was reduced compared to wheat bread. Aroma profiles were evaluated by a trained panel. Wheat, oat and wholemeal wheat breads were liked moderately, while the remaining samples had lower liking scores. Crumb grain characteristics were investigated using image analysis, and microstructure was observed by scanning electron microscopy. Overall, only breads produced from oat flour were of similar quality to wheat bread, and the utilization of buckwheat, rice, maize, quinoa, sorghum and teff flours resulted in breads of inferior quality.  相似文献   

8.
The aim of this work was to analyse the influence of defatted almond flour on soya bean‐based gluten‐free pasta. Optimal cooking time of pasta varied between 2.0 and 3.5 min, while cooking loss ranged 6.1% and 19.7%. The total protein content of samples varied from 30.4% to 41.0% (dry basis, db) in cooked pasta. The total phenols content of cooked samples varied between 1.66 and 2.99 mg ellagic acid equivalent/g, while the antioxidant activity (DPPH?) ranged between 19.1% and 41.9%. The sensory test showed no significant differences between the formulated pasta samples among brightness (3.20–3.27), surface appearance (1.14–1.20), hardness (2.14–2.36) and elasticity (1.56–1.71). Pasta developed is an innovative product that improves nutritional and functional properties of gluten‐free pasta compared to gluten‐free and traditional wheat flour pasta available on market.  相似文献   

9.
α‐Galactoside‐free lupin flour has been used to supplement durum wheat semolina flour in order to increase the nutritive value of pasta products. Supplemented pasta products had a shorter cooking time, higher cooking water absorption, cooking loss and protein loss in water than control pasta prepared with only semolina. Sensory evaluation of cooked pastas showed that products supplemented with 80 g kg?1 of α‐galactoside‐free Lupinus angustifolius var. Emir flour or with 100 g kg?1 of α‐galactoside‐free Lupinus angustifolius var. Troll flour showed the same acceptability by panellists as the semolina pasta. These levels of supplementation were selected for further studies. The cooked α‐galactoside‐free lupin/semolina pastas showed higher amounts of protein, dietary fibre, calcium, phosphorus, magnesium, zinc and antioxidant capacity than control pasta and a reasonable level of vitamin B1, vitamin B2 and vitamin E. Biological assessment of cooked pastas indicated that the true protein digestibility did not change after the fortification of semolina but protein efficiency ratio increased sharply in the pasta supplemented with α‐galactoside‐free lupin flours (2.07 and 1.92 for Emir and Troll lupin varieties, respectively) in comparison with the control pasta (1.11). It is concluded that the α‐galactoside‐free lupin flours are an adequate ingredient to improve the nutritional quality of pasta products without adding flatulent oligosaccharides. Copyright © 2006 Society of Chemical Industry  相似文献   

10.
This research is focusing on the texture, rheology, and sensory properties of pasta products enriched with the sweet potato starch (SPS) as well as on the content of resistant starch (RS) in these products. SPS was extracted from orange sweet potatoes using 1 mol. L−1 Sodium chloride solution. Durum wheat flour semolina was partially supplemented with 10, 20, and 30% (w/w) by SPS in the pasta formulation and the influence of enrichment on the cooking quality, mechanical and sensory properties, and the color was observed. SPS addition resulted in decreased water absorption and shorter dough development time, but the stability of the dough was also decreased. The optimum cooking time for pasta was reduced, but only slightly, on the other side, the swelling index increased, which negatively impacted on the firmness of the products. Increasing of the SPS content also resulted in higher stickiness values for pasta. When up to 20% of wheat flour was replaced, the color of finished products was less acceptable. In the products, the resistant and total starch content were determined. Pasta cooking resulted in the reduction of RS content, which was then increased by storing products for 24 hr. It can be concluded that the substitution of part of semolina flour with SPS increased the level of RS, but on the other side, it caused some significant differences from the quality of pasta made from semolina only.  相似文献   

11.
Sourdoughs were produced from buckwheat, oat, quinoa, sorghum, teff and wheat flour using the heterofermentative lactic acid bacteria Lactobacillus plantarum FST 1.7 and added to a basic bread formulation of flour from the same grain type (20 % addition level). Dough rheology, textural (crumb hardness, specific volume) and structural bread characteristics (crumb porosity, cell volume, brightness) of sourdough-containing breads were compared to non-sourdough-containing breads (control). Changes in protein profiles as analysed with capillary electrophoresis were observed in all sourdoughs. Furthermore, sourdough addition led to decreased dough strength resulting in softer dough. No influences on specific volume and hardness on day of baking were found for gluten-free sourdough breads. The staling rate was reduced in buckwheat (from 8 ± 2 to 6 ± 2 N/day) and teff sourdough bread (13 ± 1 to 10 ± 4 N/day), however, not significantly in comparison with the control breads. On the contrary, in wheat sourdough bread, the staling rate was significantly reduced (2 ± 1 N/day) in comparison with control bread (5 ± 1 N/day). Sourdough addition increased the cell volume significantly in sorghum (+61 %), teff (+92 %) and wheat sourdough breads (+78 %). Therefore, crumb porosity was significantly increased in all gluten-free and wheat sourdough breads. Shelf life for sourdough breads was one (teff and oat), two (buckwheat, quinoa and sorghum) and 3 days (wheat) and was not prolonged by sourdough addition. The inferior aroma of breads prepared from the gluten-free flours was also not improved by sourdough addition.  相似文献   

12.
The replacement of semolina (SEM) with raw:popped (90:10) amaranth flour blend (AFB) in pasta making at 25, 50, 75, and 100 g/100 g levels (flour basis, 14 g of water/100 g) was carried out to evaluate the effects on cooking quality and texture of the supplemented pasta samples. Significant differences on cooking quality characteristics and texture of the pasta samples were observed. The pasta solid loss increased, weight gain and firmness decreased as the AFB level increased. The semolina pasta showed the lowest solid loss (7 g/100 g) and the highest weight gain (188.3 g/100 g) and firmness (1.49 N), whereas the amaranth blend pasta was the softer (around half of the firmness of semolina pasta) and lost the higher amount of solids (11.5 g/100 g). The raw and popped AFB was suitable for increasing the nutritional quality through dietary fiber and high quality protein and even to obtain gluten-free pasta with acceptable cooking quality (solid loss of 3.5 g/100 g higher than that considered as acceptable for semolina pasta). The amaranth blend used in this study enables the partial or total replacement of wheat semolina in pastas with acceptable cooking quality and texture.  相似文献   

13.
Development of gluten-free fresh egg pasta analogues containing buckwheat   总被引:1,自引:0,他引:1  
To improve the use of common buckwheat (Fagopyrum esculentum), characterized by interesting nutritional properties, it could be used in pasta formulations. In particular, as buckwheat is devoid of the gluten-forming proteins, it might be an ingredient for celiac patient food. The aim of this study was to develop both fresh egg pastas integrated with buckwheat and fresh egg pasta analogues classifiable as gluten-free, based on buckwheat and rice flours. Matter loss in the cooking water and weight increase during cooking of buckwheat pasta were higher than those of a reference sample made of common wheat flour. As buckwheat integration increased, sample break strain was significantly lower, as a result of the progressive reduction in gluten content. In the production of gluten-free pasta analogues, wheat flour was substituted with rice flour, precooked rice flour or pregelatinized rice starch. Since samples containing precooked rice flour gave the best results, in terms of workability, break strain and weight increase during cooking, they were also produced on an industrial scale. Industrial gluten-free fresh egg pasta analogues were tougher and less deformable in comparison with the laboratory-produced samples. These results were determined by the presence of the double thermal pasteurisation treatment, which allows to obtain a better structure of the product, showing also a lower matter loss during cooking.  相似文献   

14.
The effects of the toasting process on the carbohydrate profile and antioxidant properties of chickpea flour were studied, along with the cooking behaviour, and antioxidant and nutritional properties of pasta enriched with the chickpea flour. The toasting process increased the resistant starch, insoluble dietary fibre and antioxidant properties of the flour. Addition of chickpea flour (raw and toasted) to durum wheat semolina changed the carbohydrate profile in the uncooked and cooked enriched pasta, especially with the toasted chickpea, and worsened the overall quality of the pasta. The increase in total phenolic content and total free phenolic acid content in the uncooked pasta was due to positive effects of addition of the chickpea flours, while the increase in the bound phenolics fraction in the cooked pasta was from the durum wheat, which was crucial for its high concentrations of ferulic acid. The increase in the free fraction of the Trolox equivalent antioxidant capacity in cooked pasta was consistent with the addition of chickpea.  相似文献   

15.
Processing conditions for making pasta from blends of maize (Zea mays L) flour and durum wheat (Triticum durum Desf) semolina (ratio 66:33 w) were studied. The maize mill stream characteristics determined the quality of the maize pasta; flours with low lipid content and very fine granulometry produced pasta with good colour characteristics and high cooking quality (with especially good surface conditions). The use of white maize varieties was preferred; they produced pasta which, after heat treatment, had colour indices close to those of durum wheat pasta. Extrusion conditions affected the colour characteristics and cooking quality of the pasta. The cooking qualities of macaroni products were better than those of spaghetti. In all cases, heat treatment (90°C for 2 h) improved the cooking quality of the pasta: it reduced cooking losses but did not alter the surface condition and viscoelasticity index.  相似文献   

16.
The ability of chickpea flour to enrich pasta products (e.g. lasagne) was studied. In addition, the influence of protein and other components upon the rheological properties of the dough and the cooking quality of the wheat–chickpea blends was determined. Supplementing lasagne with 5–20% w/w chickpea flour improves the physical characteristics of dough, which achieves optimum strength and extensible properties thus allowing the lasagne to maintain a firm and elastic form. Organoleptic properties (colour, flavour and overall acceptability) improved with a low proportion of chickpea flour, especially for 5% w/w substitution. For supplementation ≥ 30%, while the content of the total protein increased along with the level of fortification, lasagne processing, handling and cooking characteristics deteriorated proportionally. This could be attributed primarily to the gluten fraction, which decreases upon being diluted by the added chickpea protein. The rheological properties of high supplemented dough products (30–50% w/w) have low extensograph values and the lasagne obtained has a brown colour and a soft mushy taste that is unacceptable to consumers. So, durum wheat flour can carry 5–10% (w/w) of chickpea flour and still meet the specification of pasta products in terms of firmness, cooking quality and sensory evaluation. Copyright © 2006 Society of Chemical Industry  相似文献   

17.
The objective of the present research was to analyse the combined effect of pregelatinised cassava starch and bagasse (70:30) flour, cassava starch and amaranth flour on the cooking properties of pasta, verify the acceptance and buying intention of the product with the best technological characteristics, and finally compare them with commercial products made with regular and whole wheat flour. The vermicelli‐type pasta obtained in this study in the proportion of 10:60:30 (pre‐gelatinised flour:cassava starch:amaranth flour) showed the best results in the quality tests, with a cooking time of 3 min, mass increase of 101.5% and 0.6% solids loss to the cooking water, superior to the commercial pasta. Acceptance testing showed that this was a very good pasta (score of 7.2 on a 9‐point scale) and obtained 42% buying intention amongst the consumers. The elaboration of pasta containing pregelatinised cassava starch and bagasse (70:30) flour, cassava starch and amaranth flour was shown to be a feasible alternative with respect to the technological and sensory aspects, and could be consumed by those suffering from gluten intolerance.  相似文献   

18.
The working peanut pasta formulation range determined from a previous study was used to determine the effects of varying ingredient quantities and processing conditions on the pasta's quality and consumer acceptance. The variables studied were percent peanut flour substituted for durum wheat flour (30%, 40%, and 50%), amount of carrageenan (2.4%, 2.65%, and 2.9%), and drying temperature (60, 74, and 88 °C) on the final cooked pasta quality. Properties measured include color, texture, moisture content, and cooking loss. A home-use sensory test was conducted to determine consumer preferences and the optimum range for variables studied. Color lightness values ranged from 43.53 to 65.02, decreasing (becoming darker) with increased peanut flour level and increased drying temperature. Maximum cutting force for cooked pasta ranged from 1.59 N to 3.22 N, with higher values only for pasta dried at 88 °C. Moisture content ranged from 57.35% to 69.38%, and values decreased as drying temperature increased. Cooking loss ranged from 5.14% to 7.99%, increasing with higher levels of peanut flour and decreasing with higher levels of carrageenan. When prepared with 30% peanut flour and dried at 60 °C, the pasta was lighter in color, higher in moisture, and softer in texture than the varieties dried at higher temperatures and made with higher levels of peanut flour. Response surface analysis of consumer test data revealed that the optimum peanut pasta should contain between 35% and 45% peanut flour and should be dried between 60 and 71 °C; however, the pasta with 30% peanut flour was also a popular sample in the "favorite" categories. Practical Application: Most non-gluten protein fortification studies in durum wheat pasta found decreased firmness of dry and cooked pasta, increased cooking loss, increased stickiness, and darker product color when compared to traditional pasta. Partially defatted peanut flour is a versatile food ingredient and has high protein content. Since the lysine content of peanuts is higher than wheat, peanuts can be used to supplement wheat flour in food preparation. This study found by partially replacing wheat flour with peanut flour and with incorporation of hydrocolloid emulsifier, such as carrageenan or xanthan gum, dough viscosity, and pasta firmness significantly improved. Peanut pasta with high protein content and balanced amino acid profile can help support consumers with a healthy lifestyle.  相似文献   

19.
Whole grain sorghum is a valuable source of resistant starch and polyphenolic antioxidants and its addition into staple food like pasta may reduce the starch digestibility. However, incorporating nondurum wheat materials into pasta provides a challenge in terms of maintaining cooking quality and consumer acceptability. Pasta was prepared from 100% durum wheat semolina (DWS) as control or by replacing DWS with either wholegrain red sorghum flour (RSF) or white sorghum flour (WSF) each at 20%, 30%, and 40% incorporation levels, following a laboratory‐scale procedure. Pasta samples were evaluated for proximate composition, in vitro starch digestibility, cooking quality, and consumer acceptability. The addition of both RSF and WSF lowered the extent of in vitro starch digestion at all substitution levels compared to the control pasta. The rapidly digestible starch was lowered in all the sorghum‐containing pastas compared to the control pasta. Neither RSF or WSF addition affected the pasta quality attributes (water absorption, swelling index, dry matter, adhesiveness, cohesiveness, and springiness), except color and hardness which were negatively affected. Consumer sensory results indicated that pasta samples containing 20% and 30% RSF or WSF had acceptable palatability based on meeting one or both of the preset acceptability criteria. It is concluded that the addition of wholegrain sorghum flour to pasta at 30% incorporation level is possible to reduce starch digestibility, while maintaining adequate cooking quality and consumer acceptability.  相似文献   

20.
Nutritionally enhanced spaghetti was produced by adding high amounts (35% db) of legume flour (split pea or faba bean) to durum wheat semolina. The production of fortified pasta required an adaptation of the pasta making process (higher hydration level and mixing speed) to limit agglomeration of particles during mixing. Moreover, addition of legume flour induced a decrease in some pasta quality attributes (e.g. higher cooking loss, lower breaking energy). This could be attributed to the introduction of non-gluten proteins and insoluble fibres which weakened the overall structure of pasta. A modification of the sensorial properties including higher hardness and higher fracturability were also observed. Some quality attributes (e.g. lower cooking loss) of fortified pasta were improved by applying high and very high temperatures during the drying cycle, reflecting strengthening of the protein network. However, these treatments resulted in excessively firm and rubbery pasta according to the panelists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号