首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
To establish a better understanding of the complex densification and shrinkage processes of low-temperature co-fired ceramics (LTCC) and to improve the dimensional control in the manufacture of LTCC multilayer devices, the influence of glass, composite, and microstructural green tape characteristics on the densification and shrinkage behavior of LTCC materials, with special focus on the development of anisotropy, was investigated. To study the influence of these factors, a commercial LTCC system was analyzed regarding chemical and microstructural composition as well as sintering behavior. The results of the analysis showed that the commercial LTCC system is composed of alumina as a ceramic filler and a CaO–SiO2–B2O3–Al2O3 glass. Based on these results, a similar glass was produced. To understand the mechanisms of densification, its wetting behavior and viscosity as a function of temperature were investigated. As developed glass was mixed with an alumina powder and milled down to average grain sizes of 1, 2, and 3 μm, respectively. From these composite powders, slurries were prepared and tape cast. The sintering kinetics including onset temperature, development of viscous flow as well as phase development of both commercial and internally developed LTCC tapes LTCC tapes in relation to their modified composition and green tape structures were analyzed in situ by means of optical dilatometry, thermo-mechanical analysis (TMA), and high-temperature-X-ray diffraction. The viscous behavior of the glass-filler composites was determined by means of cyclic dilatometry in a TMA device.  相似文献   

2.
Vias, cavities, and other cutouts are significant inhomogeneities in low temperature co-fired ceramics (LTCC) tapes and lead to inhomogeneous shrinkage during sintering, which has a negative effect on the quality of the final multilayer device. The influence of such cutouts on the shrinkage behavior of LTCC tapes was investigated by an exact measurement of the geometry before and after sintering and by in situ observations with an optical dilatometer. The investigations show a strong influence of cutouts on the magnitude of shrinkage inhomogeneities. This effect is more pronounced, if the tapes become thinner, the dimensions of the cutouts become larger, or their position becomes less centric. It is shown that the most important factor on the occurrence of shrinkage inhomogeneities in tapes with cutouts is the static friction of the LTCC material on the setter. Severe warpage is caused by interlocking effects, which occur at bumps of the rough setter surface when the inner edges of the cutouts are pulled over the setter. By using a separating agent between the LTCC tape and the setter, the static friction could be minimized, which eliminates the sintering inhomogeneities.  相似文献   

3.
Zero Shrinkage of LTCC by Self-Constrained Sintering   总被引:1,自引:0,他引:1  
Low shrinkage in x and y direction and low tolerances of shrinkage are an indispensable precondition for high-density component configuration. Therefore, zero shrinkage sintering technologies as pressure-assisted sintering and sacrificial tapes have been introduced in the low-temperature co-fired ceramics (LTCC) production by different manufacturers. Disadvantages of these methods are high costs of sintering equipment and an additional process step to remove the sacrificial tapes. In this article, newly developed self-constrained sintering methods are presented. The new technology, HeraLock®, delivers LTCC modules with a sintering shrinkage in x and y direction of less than 0.2% and with a shrinkage tolerance of ±0.02% without sacrificial layers and external pressure. Each tape is self-constrained by integration of a layer showing no shrinkage in the sintering temperature range of the LTCC. Large area metallization, integration of channels, cavities and passive electronic components are possible without waviness and camber. Self-constrained laminates are an alternative way to produce zero shrinkage LTCC. They consist of tapes sintering at different temperature intervals. Precondition for a successful production of a self-constrained LTCC laminate is the development of well-adapted material and tapes, respectively. This task is very challenging, because sintering range, high-temperature reactivity and thermal expansion coefficient have to be matched and each tape has to fulfill specific functions in the final component, which requires the tailoring of many properties as permittivity, dielectric loss, mechanical strength, and roughness. A self-constrained laminate is introduced in this article. It consists of inner tapes sintering at especially low-temperature range between 650°C and 720°C and outer tapes with an as-fired surface suitable for thin-film processes.  相似文献   

4.
In this study, laminates consisting of sintered alumina substrates and green Low Temperature Co‐fired Ceramics (LTCC) tapes have been produced via Cold Low Pressure Lamination which is based on adhesive tapes for joining of layers at room temperature and pressures <5 MPa. The influences of lamination parameters such as temperature, pressure, and time on the quality of the green and sintered multilayer stack have been determined. If the bottom LTCC layer of an alumina–LTCC–LTCC laminate is metallized by screen printing defects such as crack formation can occur due to stress formation caused by constrained sintering. By adapting the lamination parameters, these stresses can be avoided. Another defect observed is cavities which form along the printed circuit lines. This type of defect is caused by the shrinkage of the circuit line width during firing; by reducing the height of the conductor line during screen printing, the cavity size can be reduced. In addition, different screen‐printed metallization layouts have been tested to determine the influence of line and spaces on the quality of sintered laminates.  相似文献   

5.
High-k LTCC tapes with ultralow sintering temperatures were developed from lead-free perovskite powders. Lowering of the sintering temperature from 1250°C down to 900°C has been achieved by means of ultrafine ceramic powders in combination with suitable sintering aids. The tape-casting process has been optimized for ultrafine powders with an enhanced sintering activity. Low-sintering high-k tapes of a thickness down to 40 μm, suitable for LTCC processing, were obtained. The sintering behavior of these high-k tapes has been studied and compared with other LTCC materials. Dielectric properties of the high-k material have been investigated on a multilayer test structure consisting of up to 20 dielectric layers. After metallization with an Ag conductor, the green tapes were stacked and laminated. Sintering of these multilayer stacks at 900°C gives dense ceramic samples. Permittivities up to 2000 have been obtained, together with low dielectric losses. Material compatibility with several Ag/Au-thick-film-paste systems has been tested.  相似文献   

6.
The low-temperature co-fired ceramic (LTCC) technology enables fabrication of sensors, actuators, microfludic devices2 and fuel cells. The structures consist of screen-printed components, gas/liquid channels, reactive chambers and mixers. The lamination process determines the quality of such devices. Thermo-compression is the most popular bonding method. The LTCC green tapes are joined together at high temperature (up to 80°C) and high pressure (up to 30 MPa) for 2 to 15 minutes. The method allows good encapsulation of the LTCC structures, but the channels geometry is strongly affected by elevated temperature and pressure. Cold Chemical Lamination (CCL) is a new LTCC green tapes bonding technique, which allows for fabrication of 3D modules. A solvent-based method is used in the CCL lamination instead of the thermo-compression process. A special liquid agent is screen-printed on the green tape in the CCL method. The liquid melts the tape surface. Then the tapes are stacked and compressed at room temperature by a printing roll. The influence of the CCL and the thermo-compression methods on the chamber's geometry quality as well as basic electrical properties of screen-printed resistors (sheet resistance Rφ standard deviation of sheet resistance σR, variability coefficient of sheet resistance VR, and long-term stability) are analyzed and compared in this paper. The bonding quality is examined by a scanning electron microscope (SEM).  相似文献   

7.
In this study, the influence of particle shape anisometry and particle alignment in tape-cast green sheets on the shrinkage behavior of low-temperature co-fired ceramics (LTCCs) was investigated quantitatively. A new method for the characterization of particle shape with the use of a particle image analyzer is presented, and its application to real material systems demonstrated. A commercial LTCC system and three developed composite powders with different average particle sizes were analyzed. After tape casting, particle alignment in the green sheets was analyzed using image analysis of SEM micrographs of cross sections. The investigations showed that the degree of particle alignment correlates significantly with the particle shape and size of the materials. A further increase in particle orientation was seen after the lamination process. Additionally, the powder packing of both single layers and laminates was analyzed by mercury porosity. The anisotropic shrinkage behavior during the sintering process was determined by means of optical dilatometry. The data obtained on the particle morphology, particle orientation in the tapes, and their effects on the shrinkage anisotropy will be discussed.  相似文献   

8.
The cold chemical lamination (CCL) is a new technique of bonding ceramic green tapes into one 3D structure. Instead of a standard thermo-compression method, new solvent-based lamination is presented. A film of a special chemical agent is put on the green tape surface. The solvent melts the surface. Then the tapes are stacked. The bonding of the green tapes is made at a room temperature. The new method is used for joining green tapes of the low temperature co-fired ceramics (LTCC). A quality of the bonding depends on the solvent type. The cold chemical lamination is examined on two types of the LTCC tapes: DuPont 943 and DuPont 951. Six types of the solvents are analyzed in the paper. The bonding quality and geometry of the test structures are examined. The lamination quality is investigated by the scanning electron microscope.  相似文献   

9.
Lamination of green ceramic tapes is one of the most important technological processes in multilayer ceramic technology. Lamination affects the quality of all 3D structures (e.g., channels, chambers, membranes, etc.). Novel chemical methods of lamination reduce the deformation of 3D structures. However, these methods are useless in the fabrication of thin membranes and structures with thick-film electronic components or electric vias. Therefore, thermo-compressive lamination is still the best solution for the lamination of green ceramic tapes. Low-pressure thermo-compressive lamination with an insert material is presented in this paper. The influence of pressure and Low Temperature Cofired Ceramics (LTCC) material on the compressibility and shrinkage of LTCC, as well as the influence of the insert material on deflection and distortion of the membranes are presented and discussed in this paper.  相似文献   

10.
During sintering of tape cast products, anisotropic shrinkage occurs, which can be attributed to an anisotropic green tape structure concerning particle and pore orientation. Little is known about the shrinkage during binder burnout (BBO) and its relation to the microstructure of green tapes including the binder–plasticizer phase. Therefore, the article determines the shrinkage behavior of green tapes derived from alumina powders with different particle shape during binder burnout and prefiring in all spatial directions. The shrinkage after prefiring relative to the green and the debindered states is also discussed. The interrelation between shrinkage behavior and microstructure is investigated in dependence on different process parameters and specifically on the thermal behavior of the binder–plasticizer phase in the green tapes. It is shown that the subtraction of the BBO shrinkage from the total shrinkage results in completely different data for the sintering shrinkage anisotropy in z direction.  相似文献   

11.
Aqueous Processing of Mullite-Containing Green Sheets   总被引:2,自引:0,他引:2  
An aqueous-based slurry for tape-casting mullite sheets was studied that is suitable for electronic packaging. A latex binder was used to attain the necessary organic content in the tape while maintaining a low slurry viscosity. The colloidal stability of these complex slurries was characterized by electrokinetic sonic amplitude (ESA) measurements and sedimentation experiments. Control of dispersion stability required the addition of a polyelectrolyte. Suitability of the aqueous-based tapes for multilayer packaging was evaluated by measuring deformation during lamination and by optimizing conditions such that binder loading and total deformation were minimized.  相似文献   

12.
The particle shape of a commercial low-temperature cofired ceramic (LTCC) composite powder was determined quantitatively in the as-received and milled state using a new particle image analyzer. All grades of the milled powder with average particle sizes of 3.0, 2.4, and 1.8 μm, respectively, exhibit a considerable stretched particle shape, because 40% of their particles have circularity values below 0.95. On the basis of the fast particle image analyzer, the influence of the raw materials on particle alignment during tape casting was investigated using "design of experiments" (DOE). In the cast LTCC green tapes, the degree of particle orientation was measured and correlated with the information from the particle shape analyses and with other material and process factors from the DOE. The results showed that the degree of particle alignment correlates significantly with the measured particle shape and size; more than 80% of the particles were oriented in the casting direction if their shape factor was below 0.5. The particle orientation causes shrinkage anisotropy. The use of a coarser LTCC powder with an average particle size d 50 of 3.0 μm instead of 1.8 μm increased the sintering anisotropy factor of LTCC tapes and laminates significantly from 1.0% to 1.85% and from 3.6% to 7.6%, respectively. The use of more binder or less solvent led to higher shrinkage anisotropies too. The casting velocity showed only a minor effect on the degree of particle orientation and sintering anisotropy, which is due to the shorter shearing period in which particle rotation can take place.  相似文献   

13.
Sintered ceramic preforms with open pore volumes from 20% to 80% (with no alteration in sintering shrinkage) were developed by adding pyrolyzable pore-forming agents (PFAs) to a tape-casting colloidal suspension. Sintered porous characteristics were directly controlled by the amount, size, and distribution of the PFA added to the green tape as well as adjustments made to the tape formulation. A conceptual model of the green tape microstructure was used to explain the influence of PFA and tape formulation on retained porosity and sintering shrinkage. The creation of a connected, open, porous network within the preform was the result of PFA particle percolation within the green body.  相似文献   

14.
During tape casting, an anisotropic shrinkage can be observed, which is attributed to particle alignment during the casting process. The understanding of the relationship between green body microstructure and shrinkage anisotropy is of great importance for further miniaturization of multilayer ceramics. In the current study, four alumina powders with different particle shape (spherical, standard, plate-like and extreme plate-like) were used to cast green tapes. The sintering shrinkage behavior and the microstructure were analyzed. In particular, the pore orientation was determined quantitatively by using a modified linear intercept method. The relationship between pore alignment and anisotropic sintering shrinkage of cast green tapes is discussed in all three spatial directions. The shrinkage anisotropy could be correlated quantitatively with the pore anisotropy. Furthermore, this correlation was verified by mathematical modeling based on elongated particles and pores.  相似文献   

15.
有机添加剂是流延料浆的关键组元,它们对料浆和流延生坯的性能有很大的影响.文章用流延法制备了YSZ电解质薄膜,并对生坯的力学性能进行了研究,分析了各有机添加剂对生坯力学性能的影响,最终提出了提高生坯及烧结体质量的方法.  相似文献   

16.
Aqueous Processing of Titanium Carbide Green Sheets   总被引:2,自引:0,他引:2  
TiC sheets were prepared by an aqueous tape-casting process. The zeta potential measurement showed that the isoelectric point for TiC powders in the absence of dispersant had a pH value of ∼3.3. According to the surface properties of TiC powders, a cationic polymer PEI was selected as dispersant. In the presence of dispersant, the isoelectric point increased to a pH value of ∼10.4. The slip stability was determined by visual observation of the fluidity of the slip as well as the settling of the powders. Results showed that the amount of dispersant required to achieve a minimum of viscosity for 50 vol% suspensions was equal to 1.2 wt%. In the absence and presence of dispersant, stable slips could be obtained in the pH ranges 7–9 and 11–12, respectively. The rheological measurements showed that with PEI as dispersant, TiC suspensions exhibited a small time dependent behavior. With polyvinyl alcohol as binder and glycerol as plasticizer, suspensions showed a thixotropic feature. As-cast tapes were dried in air at room temperature. The results showed that it was possible to fabricate homogeneous green tapes with smooth surfaces from these suspensions.  相似文献   

17.
Co‐firing of low temperature co‐fired ceramics (LTCC) and functional ceramics like ferrites is a promising approach to increase the level of integration in future microsystems, and to create new applications for LTCC technology. Besides the development of compatible material combinations, the configuration of the sintering process is an important issue for successful co‐firing. A method is presented to derive the linear shrinkage mismatch of a material combination based on density data calculated from the master sintering curves (MSCs) of the individual materials. The influence of the firing profile on the constraint in the combined multilayer can be anticipated using this method. To investigate and improve the co‐firing of ferrite and dielectric tape, the shrinkage mismatch with respect to heating rate was studied. A significant reduction of shrinkage mismatch was found for increased heating rates. The calculated results are verified by lateral shrinkage measurements on combined laminates.  相似文献   

18.
The rheological behavior and tape-casting performance of ethanol-based Pb(Mg1/3Nb2/3)O3–PbTiO3 (PMN–PT) slurries is studied. A nanocrystalline powder obtained by mechanochemical activation was used. Suspensions were prepared up to solid contents of 32 vol%, significantly higher than those usually reported for nonaqueous systems. The feasibility of replacing toxic solvents commonly used for tape casting of functional ferroelectric materials, often toluene, with ethanol is demonstrated. The density, phases and microstructure of the green tapes and sintered ceramics are presented. Cube-shaped templates were successfully aligned during the tape casting for the processing of 〈001〉-textured PMN–PT ceramics by templated grain growth. An effect of the lamination of tape stacks on the template orientation is described.  相似文献   

19.
In this work, Si3N4/glass sheets were prepared by aqueous tape casting, and the preparation process and properties of green and sintered tapes were discussed thoroughly. The effect of Si3N4 content on the rheological behavior of the slurries was investigated, and the results showed that the viscosity of the slurry increased with the solid loading and all the slurries exhibited shear‐thinning behavior within the entire range of shear rate. Green tapes were fabricated successfully by aqueous tape casting which have excellent properties such as uniform pore distribution, low porosity, and high bulk density. The sintered samples exhibited low shrinkage, and low dielectric constant and loss.  相似文献   

20.
Green tapes of Li2O–ZrO2–SiO2–Al2O3 (LZSA) parent glass were produced by aqueous tape casting as the starting material for the laminated object manufacturing (LOM) process. The rheological behavior of the powder suspensions in aqueous media, as well as the mechanical properties of the cast tapes, was evaluated. According to ξ potential measurements, the LZSA glass powder particles showed acid surface characteristics and an IEP of around 4 when in aqueous media. The critical volume fraction of solids was about 72 wt% (27 vol%), which hindered the processability of more concentrated slurries. The glass particles also showed an anisometric profile, which contributed to an increase in the interactions between particles during flow. Therefore, the suspensions could not be processed at high solids loadings. Aqueous-based glass suspensions were also characterized by shear thickening after the addition of dispersants. Three slurry compositions were formulated, suitable green tapes were cast, and tapes were successfully laminated by LOM to a gear wheel geometry. A higher tensile strength of the green tapes corresponded to a higher tensile strength of the laminates. Thermal treatment was then applied to the laminates: pyrolysis at 525°C, sintering at 700°C for 1 h, and crystallization at 850°C for 30 min. A 20% volumetric shrinkage was observed, but no surface flaws or inhomogeneous areas were detected. The sintered part maintained the curved edges and internal profile after heat treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号