首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
采用不同的模具预热温度、挤压温度和挤压速度对AZ80-0.2%In新型镁合金汽车后桥半轴进行挤压成形,并进行了力学性能和磨损性能的测试与分析。结果表明,在试验条件下,随模具预热温度从320℃增大至380℃,挤压温度从300℃增大至400℃或挤压速度为从120 mm/min升高至480 mm/min,半轴的力学性能和磨损性能都先提高后下降。后桥半轴的挤压工艺参数优选为:模具预热温度360℃、挤压温度420℃、挤压速度360 mm/min。  相似文献   

2.
采用不同温度进行了Mg-Al-Sn-Ti机械外壳镁合金的挤压试验,并进行了显微组织及耐蚀性的测试与分析。结果表明,当挤压温度从320℃增加到420℃,合金的平均晶粒尺寸先减小后增大,耐蚀性先提高后下降。合金的挤压温度优选为380℃。与320℃挤压温度相比,380℃挤压时镁合金的平均晶粒尺寸减小24.6%(13.4→10.1μm),腐蚀电位正移79mV(-0.921→-0.842V)。  相似文献   

3.
镁合金AZ31B挤压成形工艺及模具研究   总被引:1,自引:0,他引:1  
研究了AZ31B镁合金热挤压工艺与模具.实验结果表明(1)经400℃×20 h的均匀化退火后的AZ31B镁合金铸锭,在挤压温度380~400℃、挤压速度1.0~2.5 m/min的工艺条件下,可以挤压出复杂断面的型材,证明其具有良好的热挤压性能.(2)模具结构形式影响挤压力的大小.  相似文献   

4.
研究了AZ31B镁合金热挤压工艺与模具。实验结果表明:(1)经400℃×20h的均匀化退火后的AZ31B镁合金铸锭,在挤压温度380~400℃、挤压速度1.0~2.5m/min的工艺条件下,可以挤压出复杂断面的型材,证明其具有良好的热挤压性能。(2)模具结构形式影响挤压力的大小。  相似文献   

5.
形变热处理对AZ80镁合金组织及性能的影响   总被引:7,自引:0,他引:7  
降低挤压温度是细化镁合金晶粒和提高强度的有效手段,但对靠析出强化的AZ80镁合金来说,降低挤压温度会造成挤压时的析出,从而影响最终时效的效果。分析了在工业生产用挤压机上380℃和330℃挤压出的AZ80镁合金挤压和时效的组织和性能。结果表明:330℃挤压可获得6μm的均匀等轴晶粒组织,但冷却后的样品中明显存在析出物,后续时效过程较快,但最高强度不如高温挤压样品的最高强度;在380℃下挤压并时效后,其最高抗拉强度可达400MPa,延伸率可达8%。X射线衍射织构测定表明,{0002}//挤压轴的织构对性能的提高也起一定的作用。  相似文献   

6.
王建甫  杨永顺  李学烤  刘祎冉 《铸造技术》2007,28(12):1591-1594
介绍了用超塑挤压与超塑焊接复合成形法生产镁合金管材的技术原理,对镁合金管材挤压成形进行了实验研究,并通过实验确定了用这种方法生产挤压比为12.5的AZ91D镁合金管的生产工艺。主要工艺参数为:镁棒预热温度为350~400℃,模具预热温度为300~350℃,压头平均挤压速度为0.5mm/s。实验结果表明,在这种工艺条件下,挤出的管子表面质量好,无气泡、横裂纹等缺陷。用超塑挤压与超塑焊接复合成形管材可以实现连续挤压,在不改变毛坯尺寸的情况下得到所需长度的管材,而且模具及其内残余镁合金重复加热可保证模具多次使用,不用清洗。  相似文献   

7.
介绍了AZ80镁合金罩盖的结构特点及温挤压成形工艺和模具的设计要点.通过自行设计的温挤压模具,制备了AZ80镁合金罩盖,并对温挤压工艺方案进行了优化.结果表明:采用该工艺及模具能生产出表面质量较好,形状完整的罩盖;在挤压温度为280~400℃之间,挤压速度为10mm·s-1,模具预热温度为150~300℃时,镁合金罩盖的成形性能最好.  相似文献   

8.
采用不同的温度进行了电器散热片用Mg-Al-Zn-Cu-In镁合金的挤压,并进行了显微组织、散热性能和力学性能的测试与分析。结果表明:随挤压温度从300℃提高至420℃,电器散热片用Mg-Al-Zn-Cu-In镁合金的平均晶粒尺寸和断后伸长率先减小后增大,热导率(散热性能)和抗拉强度则先增大后减小。当挤压温度为380℃时,Mg-Al-Zn-Cu-In镁合金的平均晶粒尺寸为8.2μm,断后伸长率为8.1%,分别较300℃挤压时减小了27%和14%;热导率为151 W/(m·K),抗拉强度为282 MPa,分别较300℃挤压时增大了44%和25 MPa,此时散热性能和强度最好。电器散热片用Mg-Al-Zn-Cu-In镁合金的挤压温度优选为380℃。  相似文献   

9.
测试和分析了汽车用Mg-6Al-3Sn-1Mn高强镁合金的性能。结果表明:镁合金的强度随挤压温度和挤压比的增加先增大后减小,而伸长率反之,腐蚀电位随挤压温度和挤压比的增加先正移后负移。380℃挤压温度下的抗拉强度和屈服强度比320℃挤压温度的分别增大了11.26%、15.89%,腐蚀电位正移了51 mV。与挤压比14相比,挤压比22下的抗拉强度和屈服强度分别增大了10.16%、14.81%,腐蚀电位正移了46 mV,耐腐蚀性能先提升后下降。汽车用Mg-6Al-3Sn-1Mn高强镁合金的挤压工艺参数优选为:挤压温度380℃、挤压比22。  相似文献   

10.
AZ80镁合金切屑回用的探讨   总被引:1,自引:1,他引:1  
试验探讨了利用热压.热挤压变形工艺,对AZ80镁合金切屑挤压成棒料再回用,制定了棒料的成型工艺。在压制坯料时,切屑温度为330℃,模具温度为350℃,压力为200MPa。挤压时,坯料温度及模具温度与压制坯料一致。挤压比为25:1,挤压速度为20mm/s。回用棒料经过(200oc+8h)热处理后,σb为310MPa、σs为230MPa、δ为7%。探讨了AZ80镁合金切屑在热挤压变形成形后的微观组织和力学性能。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
吴玉梅  熊晓云  靳蓉  孙敬民  杨林  罗晓星 《金属学报》2005,10(10):1100-1103
目的: 观察本实验室合成的一种治疗阿尔茨海默氏症(AD)的药物(1-二甲基磷酰基-2, 2, 2 -三氯)-乙基-1-醇烟酸醋(NMF),对体外培养的皮层神经细胞活性的影响以及对海人藻酸(KA)所致的神经损伤的保护作用。方法: 采用体外培养皮层神经元的方法,解剖分离 15 d胚胎小鼠皮层神经细胞, 接种于 96孔板,48 h 后加药并培养 72 h,以 MIT 法 观察 NMF 对小鼠皮层神经细胞活性的影响;同时将接种于 24 孔板的细胞预先给予 NMF,d 3 时加或不加KA处理后,以台盼蓝染色鉴别并计数死、活细胞,可得出细胞的存活率。结果: NMF 明显促进胎鼠皮层神经元活性,其中 NMF1、0. 1、10nmol·L-1促进神经元活性增殖率分别高达 34.7%、37.4%、36. 7%, NMF 明显促进正常胎鼠皮层神经元存活卒,与对照组比较,10nmol·L-1 NMF 对皮层神经元的存活率分别提高 39.3%、73.5%。 NMF能显著 对抗 KA 所致的神经元损伤,与 KA 损伤组相比, NMF0.1、10、10nmol·L-1对损伤皮层神经元的保护率分别为 77.30%、80.10%、84.15%。结论: NMF 明 显促进胎鼠皮层神经元的洁性、提高正常皮层神经元,的存活卒,并能有效地保护KA所致的神经元损伤,提示 NMF 是一种很有潜力的治疗 AD 的药物。  相似文献   

14.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

15.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

16.
Coherent second phase often exhibits anisotropic morphology with specifi c orientations with respect to both the second and the matrix phases. As a key feature of microstructure, the morphology of the coherent particles is essential for understanding the second-phase strengthening eff ect in various industrial alloys. This letter reports anisotropic growth of coherent ferrite from austenite matrix in pure iron based on molecular dynamics simulation. We found that the ferrite grain tends to grow into an elongated plate-like shape, independent of its initial confi guration. The fi nal shape of the ferrite is closely related to the misfi t between the two phases, with the longest direction and the broad facet of the plate being, respectively, consistent with the best matching direction and the best matching plane calculated via the Burgers vector content(BVC) method. The strain energy calculation in the framework of Eshelby's inclusion theory verifi es that the simulated orientation of the coherent ferrite is energetically favorable. It is anticipated that the BVC method will be applicable in analysis of anisotropic growth and morphology of coherent second phase in other phase transformation systems.  相似文献   

17.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

18.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

19.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

20.
A new method was introduced to achieve directional growth of Sn crystals. Microstructures in liquid(Pb)/liquid(Sn) diffusion couples were investigated under various static magnetic fields. Results show that the β-Sn crystals mainly reveal an irregular dendritic morphology without or with a relatively low static magnetic field(B0.3 T). When the magnetic field is increased to 0.5 T, the β-Sn dendrites close to the final stage of growth begin to show some directional character. With a further increase in the magnetic field to a higher level(0.8–5 T), the β-Sn dendrites have an enhanced directional growth character, but the dendrites show a certain deflection. As the magnetic field is increased to 12 T, the directional growth of the β-Sn dendrites in the center of the couple is severely destroyed. The mechanism of the directional growth of the β-Sn crystals and the deflection of the β-Sn crystals with the application of static magnetic field was tentatively discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号