首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
以CaO为催化剂,在热重分析仪上进行了恒温煤焦CO2催化气化试验,分析了煤焦的催化气化特性。研究表明:CaO的催化效果和CaO的添加方式有关,机械混合法添加CaO后催化效果不明显,浸渍法添加CaO后煤焦的气化反应性明显提高;随着CaO添加量的增大,煤焦气化反应性先升高后降低,CaO的添加饱和度为5%;较高的气化温度会削弱CaO的催化效果;先添加CaO后制焦所得煤焦的气化反应性要高于先制焦后添加CaO的煤焦。  相似文献   

2.
几种金属催化褐煤焦水蒸气气化的实验研究   总被引:2,自引:0,他引:2  
在固定床反应器中研究了碱金属K、碱土金属Ca、过渡金属Ni和Fe对褐煤焦水蒸气气化的催化效果,测定了各种焦样的基碳转化率随时间的变化关系。实验结果表明,K和Ca金属使气化温度分别降低110℃和70℃;Ni和Fe对焦的水蒸气气化具有一定的催化作用,但其催化活性低于煤灰中所含金属的综合催化活性。褐煤原煤中内在的矿物质对其焦水蒸气气化具有催化作用。在化学反应控制区域内,添加K金属的焦样和脱灰煤焦水蒸气气化的气化速率在整个转化率范围内保持不变,气化反应级数为0。添加Fe的焦样和原煤焦样水蒸气气化动力学符合均相反应模型。对于添加Ca和Ni的焦样,其气化动力学可由缩核模型来描述。  相似文献   

3.
松木屑与褐煤催化共气化特性实验研究   总被引:1,自引:0,他引:1  
为了更加深入地了解松木屑及褐煤催化气化特性,对松木屑进行酸洗脱灰预处理,采用同步热分析仪研究松木屑灰成分中碱金属及碱土金属元素在气化过程中的作用,同时尝试将不同浓度催化剂(K2 CO3及CaO)添加到酸洗脱灰/褐煤样品中,研究松木屑灰成分、不同催化剂浓度以及催化剂种类对松木屑与褐煤催化共气化特性影响规律。实验结果表明,脱灰预处理对于生物质的单独气化影响不大,通过木屑/煤样与脱灰木屑/煤样对比可以断定生物质灰成分中碱金属及碱土金属对生物质与煤共气化有催化作用,其中添加 K2 CO3催化剂样品在650℃以后催化作用明显,且最大焦炭气化速率随 K2 CO3比例增加呈先增大后减小的规律,其中7% K2 CO3脱灰木屑/煤气化速率最大,表现出更好的催化作用。同浓度下CaO样品的催化作用要弱于K2 CO3样品,但其在挥发分析出阶段的最大析出速率始终高于 K2 CO3样品,与浓度无关。  相似文献   

4.
对煤焦、秸秆焦、木屑焦3种焦样及其掺混焦样进行了CO2气氛的共气化热重试验,研究了各焦样在不同催化剂添加条件下的气化特性,并对各种样品在反应过程中的分布活化能进行了计算与分析.研究结果表明:煤焦、秸秆焦、木屑焦3种焦样中煤焦的反应性显然较差;对于煤焦和秸秆焦,Na盐的催化效果优于Ca盐;对于木屑焦,Ca盐的催化效果更显著.Na盐与Ca盐的添加均可使秸秆焦气化反应速率显著增加,但反应所需温度的下降却不显著.在木屑焦中添加Na盐与Ca盐后,气化反应所需温度的下降比秸秆焦显著.对于煤焦,添加催化剂首先使气化所需温度显著下降,反应速率并不显著增加;但进一步增加催化剂,则主要使反应速率提高,反应所需温度不再显著下降.在反应过程中,各样品的分布活化能均表现出先升后降的趋势.样品中灰分的存在有助于焦样在热天平内气化反应的充分进行.  相似文献   

5.
研究了新鲜石灰石和经过煅烧/碳酸化反应(CCR)反复循环后的石灰石在烟煤煤焦CO2气化反应中的催化特性.结果表明,固定碳转化率随新鲜石灰石添加比例的增加而增大,石灰石添加比例为5%时其催化特性达到最佳,且催化活性随气化温度的升高而降低;在不同热解温度下添加2.5%新鲜石灰石制得的煤焦的气化特性与气化温度密切相关,当气化温度高于热解温度时,催化活性基本不受热解温度影响;随着CCR循环次数的增加,低温气化时石灰石催化活性比新鲜石灰石略低,但仍可作为煤焦气化反应的有效催化剂.  相似文献   

6.
高效能两段组合式煤气化工艺能有效利用高温煤气显热,以提高现有气流床气化技术的冷煤气效率。在两段组合式煤气化炉热态实验装置上,考察了二段床层不同粒径范围煤焦的气化反应性,实验得出,最优粒径范围为10~15mm。该粒径范围下,二氧化碳累积转化率达10%,其反应速率在反应30 min时达到峰值,床层平均温降最高,达到402.4℃。文中还研究了钾盐添加量对二段煤焦气化反应性能的影响,钾的添加量应大于5%才能明显体现其良好催化效果。碳酸钾用量在8%下的催化效果显著,二段出口有效气体浓度和碳转化率等参数提高明显,二氧化碳累积转化率为19%。此工艺有效实现CO2减排和资源化利用,环境效益良好。  相似文献   

7.
熔融盐催化煤与CO2气化反应研究   总被引:1,自引:1,他引:0  
利用自行设计的反应器研究熔融盐催化煤与CO2的气化反应,分析反应温度、催化剂和煤种对气化反应的影响。实验结果表明,以熔融盐为催化剂的熔融盐催化煤CO2气化反应的碳转化率较单纯煤CO2气化反应有明显提高,相同反应条件下,无烟煤、贫煤、烟煤的提高幅度分别是:76.38%~172.73%、46.98%~141.87%、40.52%~137.5%;反应温度是影响熔融盐催化煤CO2气化反应的主要因素,在反应时间为90 min时,反应温度从700 ℃上升至820 ℃,无烟煤、贫煤和烟煤的碳转化率分别从0.14、0.162、0.192增至0.33、0.363和0.402,其最佳反应温度为820 ℃左右;煤种不同使气化反应效果不同,但添加熔融盐使反应活性较差的煤种也有很好的气化效果。利用动力学均相模型与未反应缩核模型对实验数据进行处理,得出气化反应动力学参数。  相似文献   

8.
在自行搭建的热重分析仪上对煤焦、秸秆焦及其混合焦进行了CO2恒温气化试验,在消除外扩散的条件下,研究了各焦样在添加和不添加Ca O条件下的气化反应特性,研究了温度对气化反应的影响。结果表明:秸秆焦的碳转化率曲线高于煤焦,秸秆焦的反应速率快于煤焦;混合焦中秸秆焦所占比例越高,焦样的反应活性越高;在共气化过程中存在协同作用;Ca O对煤焦的催化效果要好于对秸秆焦的;对于添加催化剂条件下混合焦的气化,气化过程中的协同作用消失,当秸秆焦比例较大时,气化过程中还存在一定抑制作用;升高温度可以加快气化反应速度,但削弱了Ca O的催化效果。  相似文献   

9.
我国煤炭年产量中,1400℃以上的高灰熔点煤约占50%以上。为探索固态排渣方式的高灰熔点煤气流床气化,本文选出具有代表性的三种高灰熔点煤种和一种低灰熔点煤种,在TGA-51H型高温热天平上进行了煤焦-CO2和煤焦-水蒸汽气化反应特性的实验研究,并利用SEM考察了气化条件下煤焦及灰的微观结构。实验结果表明:在煤焦-CO2、H2O反应过程中,反应速度明显表现出高温区域的扩散反应和低温区域的化学反应;无论在1273K~1573K的低温区域,还是在高于1573K的高温区域,反应速率随燃料比(FC/V)的增加而减小。  相似文献   

10.
以CaO、MgO和Fe2O3为催化剂,使用非等温热重分析研究了典型农业生物质催化气化特性及反应动力学。在非等温法中,Doyle和Coats-Redfern近似函数都可以模拟生物质气化反应过程。通过对比这两个函数拟合实验数据的相关系数,确定在使用非等温法研究生物质反应动力学时,使用Doyle函数是求取反应动力学参数的较好方法。结果表明,在1090~1268K区间内,添加CaO的谷壳样表观活化能比谷壳的大,而添加MgO和Fe2O3的谷壳样表观活化能与谷壳的相比,分别下降了32.6%和14.4%以上,这与谷壳在不同催化剂作用下反应速率与温度关系图反映的特性是一致的,可以得出3种催化剂催化活性大小顺序为MgO>Fe2O3>CaO。最后给出了谷壳在热解阶段及焦炭气化阶段的反应动力学方程。  相似文献   

11.
运用等温热重技术,以二氧化碳为气化剂,考察不同气化温度(700℃,750℃,800℃,850℃,900℃,940℃)下,煤焦气化率随时间的变化.运用灰色理论及方法,建立煤焦气化率预测模型GM(1,1),预测结果与实验数据对比表明:该模型能够对不同气化温度下煤焦的气化率,进行较好的预测.此外,煤焦气化率为50%时,研究其...  相似文献   

12.
催化剂对褐煤焦孔隙结构和表面形态的影响   总被引:2,自引:1,他引:1  
在固定床反应器中对添加了碱金属K、碱土金属Ca、过渡金属Ni和Fe的褐煤进行制焦,采用N2等温吸附法测量各煤焦孔隙结构的表征参数,从而研究催化剂对煤焦的孔隙结构和气化反应性的影响。同时利用扫描电子显微镜分析煤焦表面形态的变化。测试结果表明,原煤焦主要含中、微孔;相对于原煤焦,添加Ca、Ni和Fe后煤焦的孔隙结构向中大孔发展,微孔比表面积减小,中大孔比表面积增大;而K-char的微孔和中大孔比表面积均大幅度减小。原煤焦以及添加Ni和Fe后所制成的焦均具有不规则粗糙表面和直管壁结构2种表面形态。当催化剂添加量达10%时,Ca-char和K-char从具有与原煤焦相同的表面形态发展为仅有粗糙表面形态。K-char和Ca-char的气化反应性随催化剂添加量的增加而增强,但K-char的比表面积随催化剂添加量的增加而减小,Ca-char的比表面积随催化剂添加量的增加先减小后增大。  相似文献   

13.
黑液水煤浆焦与普通水煤浆焦CO2催化气化反应特性研究   总被引:1,自引:2,他引:1  
黑液水煤浆燃烧和气化是一种新型的洁净煤利用技术。它是在普通水煤浆的基础上发展起来的,该文对黑液水煤浆焦和普通水煤浆焦进行CO2催化气化实验,得到了在等温条件和程序升温条件下气化反应的碳转化率。试验结果表明:黑液水煤浆焦中的钠及其化合物在气化过程中有明显催化作用,并且黑液中有机物成分也对气化起到一定促进作用。黑液水煤浆焦的碳转化率为98.37%,比普通水煤浆焦碳转化率(93.60%)高出5.1%,催化气化作用明显。两种煤焦的最佳气化反应温度为1200℃,碳转化率最高。碱金属催化剂的负荷饱和度LSL(loadingsaturationlevel)最佳值为10%。  相似文献   

14.
热解温度对神府煤热解与气化特性的影响   总被引:7,自引:1,他引:6  
采用大容量加压热重分析仪研究了不同热解温度(500, 650, 800 和1 000 ℃)与压力(常压、3 MPa)下神府煤的热解特性,同时采用傅里叶红外光谱仪、比表面积分析仪等分析仪器对所得煤焦的物化特性进行了详细分析。发现高温有利于挥发分的析出,使得煤焦产量快速降低;同时煤焦内C元素的含量快速增加而H含量逐渐减少,同时煤焦内有机官能团的红外吸收也明显减少;煤焦的孔隙表面积和孔容随热解终温的升高先增大后减小,在800 ℃(常压)和650 ℃ (3MPa)取得最小值。热解温度和压力对煤焦的气化活性也有显著的影响。采用常压热重分析仪在1000 ℃下分析了煤焦的CO2等温气化特性。常压热解焦的CO2等温气化活性随温度升高而降低,而加压热解得到的焦有不同的趋势,说明压力和温度对煤粉热解和气化的影响有一定交互作用。  相似文献   

15.
煤焦与水蒸气的气化实验及表观反应动力学分析   总被引:3,自引:0,他引:3  
在Thermax500型热重分析仪上对褐煤煤焦与水蒸气的气化反应进行了实验研究,并采用n级速率方程和Langmuir-Hinshelwood(L-H)速率方程考察了反应气体分压的影响。实验系统压力为0.1和0.6MPa,其中0.1MPa下水蒸气浓度分别为5%,10%和20%,0.6MPa下的水蒸气浓度为20%。气化反应在恒温条件下进行,温度分别为850、875、 900、925、950和1 000 ℃。实验发现,反应速率随温度和压力的增大而加快,900 ℃以下为化学反应控制区,不同压力下的表观活化能数值接近,而900 ℃以上由于受到扩散阻力的作用,表观活化能不同程度降低。采用n级速率方程计算得到褐煤煤焦与水蒸气的反应级数n为0.34,活化能E为153.7 kJ×mol-1,采用L-H方程得到活化能为207.1 kJ×mol-1,其速率方程可更精确地描述水蒸气压力的影响。  相似文献   

16.
离子交换型Ca是准东煤中主要的原位催化介质,基于Ca的挥发特性、煤焦结构的变化以及Ca的赋存形态等特征,并结合煤焦反应性分布全面分析Ca的行为特征及对煤焦反应性的影响。结果表明:离子交换型Ca的挥发程度随热解温度的升高逐渐增强;热解后煤焦中Ca组分浓度随热解温度升高而逐渐增大,但煤焦反应性与其浓度并不存在完全对应关系,应同时考虑Ca分散性的影响;拉曼分析表明在600~700℃温度区间,Ca会改善煤焦结构特征而进一步提高煤焦反应性,而在800~1000℃较高热解温度下,Ca对煤焦结构只有轻微影响;Ca-Char化学分馏前后的反应性和Ca含量对比分析证明离子可交换型Ca经热解后主要转化为一种稳定且具有较强催化活性的赋存形式。实验结果将为后续催化气化研究提供参考。  相似文献   

17.
兖州煤气化半焦表面官能团特征试验研究   总被引:4,自引:1,他引:3  
为揭示煤气化过程中煤焦结构的变化规律,在管式炉中分别在不同温度(300~1000℃)下制取了兖州煤半焦,并采用傅里叶变换红外分析获得不同气化条件下样品的红外光谱,测定兖州煤颗粒表面官能团。实验结果表明,煤的脂肪族构成有限,导致煤低温气化生烃能力较小,而高温气化下芳香结构的裂解和缩合协同效应提高了半焦富氢程度;低温时脂肪结构和芳环结构都不受影响,随着温度的升高,原始脂肪结构首先脱落,当温度较高时芳环才开始开链成脂肪结构并逐渐脱落;CO2参与气化反应,介入酚、醚、醇、酯的C=O基官能团中,影响气化半焦的富总氧度。  相似文献   

18.
针对煤的气化问题,在固定床800~950℃气化温度下,研究了煤焦与CO2气化反应的特性,采用正态分布模型进行了计算,反映出不同温度下煤焦的气化速率随转化率的变化规律。结果表明:在气化开始时刻,气化速率最大,并随着煤焦转化率的提高而逐渐降低;模型中的最大反应速率rm与温度的关系符合Ar-rhenius定律,由此求出煤焦的活化能为192.305 4 kJ/mol。  相似文献   

19.
贝壳的主要成分为CaCO3,以贝壳为催化剂考察其对木屑生物质气化的催化效果。通过在不同剂料比及温度条件下生物质的的产气特性实验发现:水蒸气气氛中贝壳对木屑生物质最佳催化温度在750~950℃之间;贝壳主要加快催化含碳大分子裂解,气化效率与产气中H2+CO总含量以及H2/CO比有关;水蒸气气氛下,当温度为950℃、剂料比为20%时,碳转化率为94%,物料能量转化率为81%,比同温度下纯生物质的碳转化率和能量转化率分别提高了10.3%和6%。  相似文献   

20.
为探索超富集植物资源化利用方法,本文以超富集植物为原料制备的活性炭作为催化剂,利用热重分析仪和管式炉进行了原煤的CO2气化实验,考察超富集植物制备活性炭对煤气化的催化效果,充分利用超富集植物富含重金属的特点,探究超富集植物的有效利用途径。结果表明:原煤中添加质量分数10%的超富集植物制备的活性炭,原煤失重率由58.01%提高至66.83%;气化温度在953.15~1168.15K区间,活化能由155.5k J/mol降至136.5 kJ/mol;管式炉气化终温为1 173.15 K时,碳转化率由78.88%提升至90.16%;随超富集植物制备活性炭添加量的增加,催化气化效果越好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号