首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
采用Hopkinson拉杆试验系统对800 MPa级冷轧双相钢(DP800)进行动态拉伸试验,动态拉伸选择应变速率为500、1000和2250 s-1.通过比较试验结果得出:双相钢的塑性延伸强度Rp0.2和抗拉强度Rm与应变速率的关系呈指数形式增加;DP800在高应变速率塑性变形会产生绝热温升效应,计算可得DP800在应变速率为2250 s-1时拉伸变形产生的绝热温升为89℃.基于J-C(Johnson-Cook)模型和Z-A(Zerilli-Armstrong)模型,对DP800的本构模型进行了研究,并对J-C模型应变速率效应多项式进行二次化修正,修正后的J-C模型相较于J-C模型对DP800在不同应变速率下的平均可决系数从0.9228提高到0.9886.   相似文献   

2.
研究了钒微合金化对Q-P-T工艺处理的0.28C-Si-Mn-Cr贝氏体钢组织与力学性能的影响。结果表明,试验钢在900℃奥氏体化进行淬火处理,350℃碳分配后,钢的组织由板条状马氏体、少量贝氏体及残余奥氏体组成。随着碳分配时间的延长,碳原子从板条马氏体扩散进入残余奥氏体,残余奥氏体含量增加,使得材料的塑性和韧性提高,拉伸强度下降。同时,随着钒含量增加,试验钢的拉伸强度增加,但塑性和韧性下降。在钒和Q-P-T工艺的双重作用下,含0.1%钒的中碳贝氏体钢获得了拉伸强度1375MPa、断后伸长率23.2%、冲击功值99.5J的综合力学性能。  相似文献   

3.
研究了室温拉伸时应变速率对高氮奥氏体不锈钢18%Cr-18%Mn-0.65%N力学性能和塑性流变行为的影响。结果表明,随应变速率的升高,试验钢的屈服强度Rp0.2升高,而抗拉强度Rm及塑性略有降低;在各应变速率下,试验钢的塑性流变行为均可以用Ludwigson模型进行描述;应变速率的升高对试验钢流变方程参数的影响如下:1)强度系数K1、应变硬化指数n1和n2减小,试验钢的加工硬化能力降低;2)真实屈服强度TYS降低;3)瞬变应变εL减小,表明升高应变速率能够促进位错多系滑移和交滑移。  相似文献   

4.
试验0.05C-14Mn-19Cr-0.7N钢经1t非真空感应炉冶炼,并重熔成电渣锭。在电渣锭中心取样,通过Gleeble 3800热模拟试验机对试验钢进行800~1250℃,应变速率0.005~10s-1的高温拉伸试验,得出温度和应变速率对试验钢断面收缩率的影响,并观察了各温度拉伸后的组织。试验结果表明,随着温度从800℃升高至1250℃,试验钢抗拉强度从327 MPa下降到68 MPa,断面收缩率由22%升至55%;1200℃时,应变速率从0.01s-1增加到10s-1时,试验钢的抗拉强度从43 MPa增加至109 MPa,断面收缩率从38%提高至71%。综合实验结果,高氮奥氏体不锈钢0.05C-14Mn-19Cr-0.7N最优的变形参数为:1200~1250℃,应变速率1~10s-1。  相似文献   

5.
将C-Si-Mn钢加热至800℃保温120 s后,分别快速冷却至350~410℃保温600 s以模拟贝氏体等温转变工艺。通过扫描电镜(SEM)和拉伸测试的方法研究了贝氏体等温温度对超高强相变诱导塑性钢(TRIP钢)微观组织和力学性能的影响规律。结果表明,冷轧TRIP钢的微观组织由铁素体、贝氏体、马氏体和残余奥氏体组成;贝氏体和残余奥氏体形成于等温转变阶段,而马氏体形成于等温后的终冷阶段。随着贝氏体等温温度增加,固溶C原子扩散系数提高,促进残余奥氏体中碳化物的析出。因此,奥氏体中的平均固溶C含量降低,使得TRIP钢残余奥氏体分数降低,马氏体体积分数增加。贝氏体等温温度由350℃增加至410℃时,TRIP钢屈服强度由720 MPa降低至573 MPa,抗拉强度由1 195 MPa提高至1 312 MPa,伸长率A_(80)由17.8%降低至12.5%。贝氏体等温温度为350℃时,冷轧TRIP钢具有优良的综合力学性能,强塑积达到21 270 MPa·%。  相似文献   

6.
将C-Si-Mn钢加热至800℃保温120 s后,分别快速冷却至350℃保温100~1 000 s以模拟贝氏体等温转变工艺。通过扫描电镜(SEM)和拉伸测试的方法研究了贝氏体等温时间对超高强冷轧相变诱导塑性钢(TRIP钢)微观组织和力学性能的影响规律。结果表明,冷轧TRIP钢的微观组织由铁素体、贝氏体、马氏体和残余奥氏体组成。贝氏体和残余奥氏体形成于等温转变阶段,而马氏体形成于等温后的终冷阶段。随着贝氏体等温时间增加,促进了过冷奥氏体向贝氏体转变,固溶C原子充分向剩余奥氏体中富集。因此,过冷奥氏体中的平均碳含量增加,使得冷轧TRIP钢残余奥氏体分数提高,马氏体体积分数下降。贝氏体等温时间由100 s延长至1 000 s时,冷轧TRIP钢屈服强度由596 MPa提高至692 MPa,抗拉强度由1 455 MPa降低至1 138 MPa,屈强比由0.41提高至0.61,伸长率(A80)由6.3%提高至18.9%。贝氏体等温时间为1 000 s时,冷轧超高强TRIP钢具有优良的综合力学性能,最大强塑积达到21 510 MPa·%。  相似文献   

7.
针对目前高碳高硅低温贝氏体(纳米结构贝氏体)相变速度缓慢的现状,采用贝氏体相变热力学理论分析主要合金元素对低温贝氏体相变驱动力的影响,设计了新型纳米结构贝氏体钢成分0.83C-2.44Si-0.43Mn-0.73Al.利用膨胀仪研究该成分贝氏体钢在不同温度下的相变整体动力学,综合使用扫描电子显微镜、X射线衍射、电子背散射衍射等方法研究热处理工艺对实验钢组织和力学性能的影响.结果表明,350℃等温转变贝氏体的抗拉强度为1401 MPa,延伸率为42.21%,强塑积可达59136 MPa·%,在室温拉伸过程中发生明显的相变诱导塑性效应;230℃等温转变组织中贝氏体铁素体片层厚度小于100 nm,抗拉强度达2169 MPa.   相似文献   

8.
赵佳莉  张福成  于宝东  刘辉 《钢铁》2017,52(1):71-80
 对一种新型70Si3MnCrMo钢进行了等温和连续冷却贝氏体相变热处理。利用拉伸和冲击试验研究试验钢的力学行为,利用XRD、SEM和TEM等方法对试验钢进行了相组成分析和微观组织形貌观察。研究结果表明,试验钢经等温贝氏体相变,其最佳综合力学性能出现在200 ℃回火,强塑积为26.4 GPa·%。经连续冷却贝氏体相变,其最佳综合力学性能出现在300 ℃回火,强塑积达到28.6 GPa·%。回火温度较低的情况下,热处理后的组织为由贝氏体铁素体和残余奥氏体组成的无碳化物贝氏体组织,这种无碳化物贝氏体由超细贝氏体铁素体板条而获得超高强度,由一定量的高碳残余奥氏体来保证较高的塑性和韧性。试验钢经连续冷却贝氏体相变,其贝氏体铁素体板条中出现了超细亚单元,并且残余奥氏体呈薄膜状和小块状两种形态分布于贝氏体铁素体板条之间,这两种形态残余奥氏体的稳定性不同。拉伸试样在变形过程中残余奥氏体持续发生TRIP效应,直至全部残余奥氏体都发生转变生成应变诱发马氏体,从而使钢得到更好的强、塑性配合,表现出十分优异的综合性能。  相似文献   

9.
将Si-Mn系双相钢(DP钢)作为对比钢种,分析研究了高应变速率下600 MPa级Si-Mn系TRIP钢及含Al、Ni的1000 MPa级TRIP钢的显微组织及其动态力学性能.对DP钢而言,其抗拉强度随着应变速率的增大而升高,断裂延伸率则由于绝热温升的作用也呈上升趋势;对TRIP钢而言,随着应变速率的增大,其抗拉强度不断增大,断裂延伸率先减小后增大,但无法达到其静态拉伸时的塑性水平,这是由于在动态拉伸条件下奥氏体向马氏体的渐进式转变被抑制造成的.此外,在相同应变速率下测得的TRIP钢的绝热温升始终比DP钢高,而这部分高出的热量应当来自于在动态变形条件下TRIP钢中发生TRIP效应后释放的相变潜热.   相似文献   

10.
冶炼了三种不同钛含量(0、0.9%和1.8%)的贝氏体-马氏体双相钢,通过热处理调整试样中贝氏体含量使其保持相同的强度水平,借助电化学充氢和慢应变速率拉伸试验手段研究了贝氏体含量对贝氏体-马氏体双相钢抗氢脆行为的影响。试验结果表明,钛含量为1.8%的试验钢中具有最高的贝氏体含量和最优异的抗氢脆性能,这主要归因于渗碳体-铁素体界面位错等不可逆陷阱对氢原子的俘获作用。为了提高贝氏体-马氏体双相钢的抗氢脆能力,可增加贝氏体组织中细小渗碳体颗粒的数量,为塑性变形过程中氢的迁移提供更多的不可逆氢陷阱。  相似文献   

11.
以轴承用高碳贝氏体钢为研究对象,采用扫描电子显微镜、X射线衍射仪及硬度计等手段研究了不同奥氏体化温度对贝氏体钢组织形成及性能的影响,遴选出最优的奥氏体化工艺,同时对比了不同贝氏体等温转变后有无Ce元素添加的高碳贝氏体钢的力学性能.试验结果表明,950℃奥氏体化温度得到的组织中无明显的大颗粒未溶碳化物,组织尺寸和硬度性能...  相似文献   

12.
周松波  胡锋  尹朝朝  吴开明 《钢铁》2020,55(11):103-111
 中碳贝氏体钢由亚微米贝氏体铁素体板条和残余奥氏体组成,对韧性起主要作用的为残余奥氏体,通过细化块状组织能显著提高贝氏体钢的韧性。为了探究块状组织细化对断裂行为的影响,采用两步贝氏体等温工艺对中碳(碳质量分数为0.3%)贝氏体钢中块状组织进行细化,对拉伸和冲击性能及其裂纹扩展行为变化进行了研究。利用光学、扫描电子(SEM)、透射电子(TEM)显微镜、X射线衍射(XRD)等对试验钢的显微组织类型和尺寸、拉伸和冲击性能及断口形貌进行表征和分析。结果表明,与一步贝氏体工艺相比,两步贝氏体工艺中新形成的贝氏体铁素体分割细化块状马氏体+残余奥氏体,随着真应变的增加,加工硬化的效果更好;断裂形式为韧性断裂,且韧窝的数量、深度更优于一步贝氏体转变,塑韧性更佳。  相似文献   

13.
利用CMT5105电子万能试验机和HTM 16020电液伺服高速试验机对超高强热成形钢进行拉伸试验,应变速率范围为10-3~103 s-1,模拟热成形零件在不同应变速率下的碰撞情况.结果表明:在低应变速率阶段(10-3~10-1 s-1)实验钢的应变速率敏感性不高,随应变速率的升高,实验钢的强度和延伸率变化不大;在高应变速率阶段(100~103 s-1)实验钢具有高的应变速率敏感性,随应变速率的升高,实验钢的强度和延伸率都呈增大的趋势,并且抗拉强度的应变速率敏感性要大于屈服强度.这主要是由于在高应变速率阶段拉伸时产生的绝热温升现象和应变硬化现象共同作用造成的.实验钢颈缩后的延伸率随应变速率的增大而减小,主要是由于高应变速率下马氏体局部变形不均匀造成的.实验钢吸收冲击功的能力随应变速率的升高而增大,实验钢达到均匀延伸率时吸收冲击功的大小对应变速率更敏感.与低应变速率阶段相比,实验钢在高应变速率阶段的断口韧窝的平均直径更小,韧窝的深度更深,这与高应变速率阶段部分马氏体晶粒的碎化有关.通过扫描电镜和透射电镜观察发现,在高应变速率拉伸时晶粒有明显的拉长趋势,并且在应力集中的地方有一些微空洞的存在,应变速率为103 s-1时部分区域有碎化的现象.   相似文献   

14.
谌康  徐乐  时捷  何肖飞  王毛球 《钢铁》2017,52(5):94-99
 通过SEM、TEM、XRD、化学相分析等方法对比研究新型扭杆弹簧用40Si2Ni2CrMoV钢(代号N1)和现有45CrNiMoVA钢微观组织及其对力学性能的影响,并利用慢应变速率拉伸方法对比研究两种不同扭杆弹簧用钢的氢脆敏感性。结果发现,N1钢由于添加硅、钼等抗回火软化元素,使得N1钢在较高的300 ℃温度回火时还能保持一定的抗拉强度,N1钢有大量细小的ε-碳化物析出,使得屈服强度增加,屈强比在0.80以上,45CrNiMoVA钢经180 ℃低温回火后屈服强度在1 550 MPa左右,屈强比只有0.72;经相同条件充氢后,N1钢的慢拉伸强度下降幅度较小,其试样断口中也没有观察到沿晶断裂特征,N1钢的氢脆敏感性明显低于45CrNiMoVA钢。  相似文献   

15.
The effects of Mn and Cr contents on bainitic transformation kinetics,microstructures and mechanical properties of high-carbon low alloy steels after austempered at 230,300 and 350 ℃ were determined by dilatometry,optical microscopy,scanning electron microscopy,X-ray diffraction and tensile tests. The results showed that Mn and Cr can extend bainitic incubation period and completion time,and with the increase of Mn and Cr content,the bainitic ferrite plate thickness decreased and the volume fraction of retained austenite increased. TRIP( transformation induced plasticity) effect was observed during tensile testing which improved the overall mechanical property. The increase of Mn concentration can improve the strength to a certain extent,but reduce the ductility. The increase of Cr concentration can improve the ductility of bainitic steels which transformed at a low temperature. The low temperature bainitic steel austempered at 230 ℃ exhibited excellent mechanical properties with ultimate tensile strength of( 2146 ± 11) MPa and total elongation of( 12. 95 ± 0. 15) %.  相似文献   

16.
周云  杨晓伟  陈焕德  张宇 《钢铁》2020,55(1):101-107
 为了推进高强钢筋工业应用,以Nb-V复合微合金化600 MPa级高强钢筋为研究对象,采用高温激光共聚焦显微镜研究了加热温度对晶粒长大规律的影响,并进行了工业试制。结果表明,随着加热温度升高、保温时间延长,奥氏体晶粒尺寸增大;加热温度从1 180提高至1 270 ℃,保温60 min,奥氏体平均晶粒尺寸从58.7提高至85.1 μm。工业试制中,加热温度由1 200提高至1 270 ℃,珠光体比例增加,珠光体团尺寸增大,屈服强度和抗拉强度升高,伸长率下降,拉伸断口形貌由韧性断裂转变为准解理脆性断裂;当加热温度为1 200~1 250 ℃时,屈服强度为640~659 MPa,抗拉强度为823~846 MPa,强屈比为1.28~1.30,断后伸长率为16.6%~19.2%,最大力伸长率为10.6%~13.0%。  相似文献   

17.
对一种含铜超低碳Mn-Nb-B系微合金钢进行TMCP工艺,得到屈服强度达850 MPa的超低碳贝氏体钢。采用光学显微镜和扫描电子显微镜对试验钢不同板厚处的组织进行观察与分析,通过透射电子显微镜分析试验钢板条贝氏体间析出物,结果表明,屈服强度850 MPa超低碳贝氏体钢组织主要为细小的板条贝氏体,沿板厚方向上贝氏体板条宽度变化不大,板条长度从表层到心部逐渐增大。贝氏体板条的细化和微细析出物的形态、大小及分布对试验钢的强韧性起决定作用。  相似文献   

18.
邹航  徐光  刘曼 《钢铁研究学报》2020,32(8):746-751
摘要:设计了3种不同轧后冷却速率和快速冷却终点温度,进行轧后冷却实验,结合扫描电子显微镜、透射电子显微镜和拉伸实验等,研究了冷却工艺对低碳高强复相钢组织和性能的影响。结果表明,在同一冷却速率下,随着快速冷却终点温度的增加,形成的贝氏体逐渐减少,马奥岛(M/A)明显粗化,且M/A岛比例增加,组织整体形貌从板条状变成块状。此外,在相同冷却速率下,随着快速冷却终点温度的增加,钢的强度逐渐降低,伸长率增加。另外,当快速冷却终点温度为480℃时,随着冷却速率的减低,贝氏体逐渐消失,且M/A岛逐渐粗化,同时随着冷却速率的降低,钢的强度降低,伸长率有所增加。本研究结果可以为生产和优化低碳高强复相钢的轧后冷却工艺制度提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号