首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 364 毫秒
1.
This paper investigates the application of a ground‐based laser scanning system for providing quantitative tree measurements in densely stocked plantation forests. A methodology is tested in Kielder Forest, northern England using stands of mature Sitka spruce (Picea sitchensis) and a structured mixture of Sitka spruce and lodgepole pine (Pinus contorta), standing at tree densities of 600 and 2800?stems?ha?1 respectively. Three laser scans, two in the Sitka spruce and one in structured mixture, were collected using a Reigl Inc. LPM‐300VHS high‐speed laser scanner. Field measurements were recorded at the same time and included tree diameter at breast height (dbh) and tree height. These measurements were then compared with those derived from the scanner. The results demonstrate that accurate measurements of tree diameter can be derived directly from the laser scan point cloud return in instances where the sensor's view of the tree is not obstructed. Measurements of upper stem diameters, branch internodal distance and canopy dimensions can also be measured from the laser scan data. However, at the scanning spatial resolution selected, it was not possible to measure branch size. The level of detail that can be obtained from the scan data is dependent on the number and location of scans within the plot as well as the scanning resolution. Essentially, as the shadowing caused by tree density or branching frequency increases, the amount of useful information contained in the scan decreases.  相似文献   

2.
Adaptive single tree detection methods using airborne laser scanning (ALS) data were investigated and validated on 40 large plots sampled from a structurally heterogeneous boreal forest dominated by Norway spruce and Scots pine. Under the working assumption of having uniformly distributed tree locations, area-based stem number estimates were used to guide tree crown delineation from rasterized laser data in two ways: (1) by controlling the amount of smoothing of the canopy height model and (2) by obtaining an appropriate spatial resolution for representing the forest canopy. Single tree crowns were delineated from the canopy height models (CHMs) using a marker-based watershed algorithm, and the delineation results were assessed using a simple tree crown delineation algorithm as a reference method (‘RefMeth’). Using the proposed methods, approximately 46–50% of the total number of trees were detected, while approximately 5–6% false positives were found. The detection rate was, in general, higher for Scots pine than for Norway spruce. The accuracy of individual tree variables (total height and crown width) extracted from the laser data was compared with field-measured data. The individual tree heights were better estimated for deciduous tree species than for the coniferous species Norway spruce and Scots pine. The estimation of crown diameters for Scots pine and deciduous species achieved comparable accuracy, being better than for Norway spruce. The proposed methodology has the potential for easy integration with operational laser scanner-based stand inventories.  相似文献   

3.
Due to increased fuel loading as a result of fire suppression, land managers in the American west are in need of precise information about the fuels they manage, including canopy fuels. Canopy fuel metrics such as canopy height (CH), canopy base height (CBH), canopy bulk density (CBD) and available canopy fuel (ACF) are specific inputs for wildfire behavior models such as FARSITE and emission models such as FOFEM. With finer spatial resolution data, accurate quantification of these metrics with detailed spatial heterogeneity can be accomplished. Light Detection and Ranging (LiDAR) and color near-infrared imagery are active and passive systems, respectively, that have been utilized for measuring a range of forest structure characteristics at high resolution. The objective of this research was to determine which remote sensing dataset can estimate canopy fuels more accurately and whether a fusion of these datasets produces more accurate estimates. Regression models were developed for ponderosa pine (Pinus ponderosa) stand representative of eastern Washington State using field data collected in the Ahtanum State Forest and metrics derived from LiDAR and imagery. Strong relationships were found with LiDAR alone and LiDAR was found to increase canopy fuel accuracy compared to imagery. Fusing LiDAR with imagery and/or LiDAR intensity led to small increases in estimation accuracy over LiDAR alone. By improving the ability to estimate canopy fuels at higher spatial resolutions, spatially explicit fuel layers can be created and used in wildfire behavior and smoke emission models leading to more accurate estimations of crown fire risk and smoke related emissions.  相似文献   

4.
Conservation of biodiversity requires information at many spatial scales in order to detect and preserve habitat for many species, often simultaneously. Vegetation structure information is particularly important for avian habitat models and has largely been unavailable for large areas at the desired resolution. Airborne LiDAR, with its combination of relatively broad coverage and fine resolution provides existing new opportunities to map vegetation structure and hence avian habitat. Our goal was to model the richness of forest songbirds using forest structure information obtained from LiDAR data. In deciduous forests of southern Wisconsin, USA, we used discrete-return airborne LiDAR to derive forest structure metrics related to the height and density of vegetation returns, as well as composite variables that captured major forest structural elements. We conducted point counts to determine total forest songbird richness and the richness of foraging, nesting, and forest edge-related habitat guilds. A suite of 35 LiDAR variables were used to model bird species richness using best-subsets regression and we used hierarchical partitioning analysis to quantify the explanatory power of each variable in the multivariate models. Songbird species richness was correlated most strongly with LiDAR variables related to canopy and midstory height and midstory density (R2 = 0.204, p < 0.001). Richness of species that nest in the midstory was best explained by canopy height variables (R2 = 0.197, p < 0.001). Species that forage on the ground responded to mean canopy height and the height of the lower canopy (R2 = 0.149, p < 0.005) while aerial foragers had higher richness where the canopy was tall and dense and the midstory more sparse (R2 = 0.216, p < 0.001). Richness of edge-preferring species was greater where there were fewer vegetation returns but higher density in the understory (R2 = 0.153, p < 0.005). Forest interior specialists responded positively to a tall canopy, developed midstory, and a higher proportion of vegetation returns (R2 = 0.195, p < 0.001). LiDAR forest structure metrics explained between 15 and 20% of the variability in richness within deciduous forest songbird communities. This variability was associated with vertical structure alone and shows how LiDAR can provide a source of complementary predictive data that can be incorporated in models of wildlife habitat associations across broad geographical extents.  相似文献   

5.
Total above-ground biomass of spruce, pine and birch was estimated in three different field datasets collected in young forests in south-east Norway. The mean heights ranged from 1.77 to 9.66 m. These field data were regressed against metrics derived from canopy height distributions generated from airborne laser scanner (ALS) data with a point density of 0.9–1.2 m?2. The field data consisted of 79 plots with size 200–232.9 m2 and 20 stands with an average size of 3742 m2. Total above-ground biomass ranged from 2.27 to 90.42 Mg ha?1. The influences of (1) regression model form, (2) canopy threshold value and (3) tree species on the relationships between biomass and ALS-derived metrics were assessed. The analysed model forms were multiple linear models, models with logarithmic transformation of the response and explanatory variables, and models with square root transformation of the response. The different canopy thresholds considered were fixed values of 0.5, 1.3 and 2.0 m defining the limit between laser canopy echoes and below-canopy echoes. The proportion of explained variability of the estimated models ranged from 60% to 83%. Tree species had a significant influence on the models. For given values of the ALS-derived metrics related to canopy height and canopy density, spruce tended to have higher above-ground biomass values than pine and deciduous species. There were no clear effects of model form and canopy threshold on the accuracy of predictions produced by cross validation of the various models, but there is a risk of heteroskedasticity with linear models. Cross validation revealed an accuracy of the root mean square error (RMSE) ranging from 3.85 to 13.9 Mg ha?1, corresponding to 22.6% to 48.1% of mean field-measured biomass. It was concluded that airborne laser scanning has a potential for predicting biomass in young forest stands (> 0.5 ha) with an accuracy of 20–30% of mean ground value.  相似文献   

6.
This paper highlights the potential of multiwaveband polarimetric SAR data for the estimation of both canopy (percentage canopy closure) and sub-canopy (stem biomass) biophysical variables of a Sitka spruce forest in upland Wales. Stand stem biomass was estimated using forest survey data on diameter at breast height (DBH) and tree height from 0.01 ha plots. Photographs of the forest canopy were taken using a camera fitted with a wide-angle fisheye lens from a number of locations within a stand. The photographs were later digitized and estimates of stand percentage canopy closure were derived using image processing software. It was found that C-band HV and VV, and L-band HV and VV polarization backscatter were significantly related to stem biomass. There was no sensitivity to percentage canopy closure using single polarization backscatter but highly significant relationships were obtained using ratios of single polarization backscatter and variables derived from the polarization signatures. The strong correlations between C-band backscatter and stem biomass indicated a relationship between the structure of the top crown layer and sub-canopy biomass.  相似文献   

7.
Scanning Light Detecting and Ranging (LiDAR), Synthetic Aperture Radar (SAR) and Interferometric SAR (InSAR) were analyzed to determine (1) which of the three sensor systems most accurately predicted forest biomass, and (2) if LiDAR and SAR/InSAR data sets, jointly considered, produced more accurate, precise results relative to those same data sets considered separately. LiDAR ranging measurements, VHF-SAR cross-sectional returns, and X- and P-band cross-sectional returns and interferometric ranges were regressed with ground-estimated (from dbh) forest biomass in ponderosa pine forests in the southwestern United States. All models were cross-validated. Results indicated that the average canopy height measured by the scanning LiDAR produced the best predictive equation. The simple linear LiDAR equation explained 83% of the biomass variability (n = 52 plots) with a cross-validated root mean square error of 26.0 t/ha. Additional LiDAR metrics were not significant to the model. The GeoSAR P-band (λ = 86 cm) cross-sectional return and the GeoSAR/InSAR canopy height (X-P) captured 30% of the forest biomass variation with an average predictive error of 52.5 t/ha. A second RaDAR-FOPEN collected VHF (λ ∼ 7.8 m) and cross-polarized P-band (λ = 88 cm) cross-sectional returns, none of which proved useful for forest biomass estimation (cross-validated R2 = 0.09, RMSE = 63.7 t/ha). Joint consideration of LiDAR and RaDAR measurements produced a statistically significant, albeit small improvement in biomass estimation precision. The cross-validated R2 increased from 83% to 84% and the prediction error decreased from 26.0 t/ha to 24.9 t/ha when the GeoSAR X-P interferometric height is considered along with the average LiDAR canopy height. Inclusion of a third LiDAR metric, the 60th decile height, further increased the R2 to 85% and decreased the RMSE to 24.1 t/ha. On this 11 km2 ponderosa pine study area, LiDAR data proved most useful for predicting forest biomass. RaDAR ranging measurements did not improve the LiDAR estimates.  相似文献   

8.
We used LiDAR topographic data, AVIRIS hyperspectral data, and locally measured tidal fluctuations to characterize patterns of plant distribution within a southern California salt marsh (Carpinteria Salt Marsh (CSM)). LiDAR data required ground truthing and correction before they were suitable for use. Twenty to forty percent of the uncertainty associated with LiDAR was due to variance in the elevation of the target surface, the balance was attributed to error inherent in the LiDAR system. The incidence of LiDAR penetration of plant canopy cover (i.e., registration of ground elevation) was only three percent. The depth of LiDAR penetration into the plant canopy varied according to plant species composition; plant species-specific corrections significantly improved LiDAR accuracy (58% reduction in overall uncertainty) and with the use of ground-based surveys, reduced overall RMSE to an average of 6.3 cm in vegetated areas. A supervised classification of AVIRIS data was used to generate a vegetation map with six classification types; overall classification accuracy averaged 59% with a kappa coefficient of 0.40. The vegetation classification map was overlaid with a LiDAR-based digital elevation model (DEM) to compute elevation distributions and frequencies of tidal inundation. The average elevations of the dominant plant classifications found in CSM (e.g., Salicornia virginica, Jaumea carnosa, and salt-grass mix, a mixture of multiple marsh plant species) occurred within a 17 cm range, a vertical change that resulted in a 7% difference in the period of tidal inundation.  相似文献   

9.
Identifying species of individual trees using airborne laser scanner   总被引:2,自引:0,他引:2  
Individual trees can be detected using high-density airborne laser scanner data. Also, variables characterizing the detected trees such as tree height, crown area, and crown base height can be measured. The Scandinavian boreal forest mainly consists of Norway spruce (Picea abies L. Karst.), Scots pine (Pinus sylvestris L.), and deciduous trees. It is possible to separate coniferous from deciduous trees using near-infrared images, but pine and spruce give similar spectral signals. Airborne laser scanning, measuring structure and shape of tree crowns could be used for discriminating between spruce and pine. The aim of this study was to test classification of Scots pine versus Norway spruce on an individual tree level using features extracted from airborne laser scanning data. Field measurements were used for training and validation of the classification. The position of all trees on 12 rectangular plots (50×20 m2) were measured in field and tree species was recorded. The dominating species (>80%) was Norway spruce for six of the plots and Scots pine for six plots. The field-measured trees were automatically linked to the laser-measured trees. The laser-detected trees on each plot were classified into species classes using all laser-detected trees on the other plots as training data. The portion correctly classified trees on all plots was 95%. Crown base height estimations of individual trees were also evaluated (r=0.84). The classification results in this study demonstrate the ability to discriminate between pine and spruce using laser data. This method could be applied in an operational context. In the first step, a segmentation of individual tree crowns is performed using laser data. In the second step, tree species classification is performed based on the segments. Methods could be developed in the future that combine laser data with digital near-infrared photographs for classification with the three classes: Norway spruce, Scots pine, and deciduous trees.  相似文献   

10.
We calibrated upward sensing profiling and downward sensing scanning LiDAR systems to estimates of canopy fuel loading developed from field plots and allometric equations, and then used the LiDAR datasets to predict canopy bulk density (CBD) and crown fuel weight (CFW) in wildfire prone stands in the New Jersey Pinelands. LiDAR-derived height profiles were also generated in 1-m layers, and regressed on CBD estimates calculated for 1-m layers from field plots to predict three-dimensional canopy fuel loading. We then produced maps of canopy fuel metrics for three 9 km2 forested areas in the Pinelands.Correlations for standard LiDAR-derived parameters between the two LiDAR systems were all highly significant, with correlation coefficients ranging between 0.82 and 0.98. Stepwise linear regression models developed from the profiling LiDAR data predicted maximum CBD and CFW (r2 = 0.94 and 0.92) better than those developed from the scanning LiDAR data (r2 = 0.83 and 0.71, respectively). A single regression for the prediction of CBD at all canopy layers had r2 values of 0.93 and 0.82 for the profiling and scanning datasets, respectively. Individual bin regressions for predicting CBD at each canopy height layer were also highly significant at most canopy heights, with r2 values for each layer ranging between 0.36 and 0.89, and 0.44 and 0.99 for the profiling and scanning datasets, respectively. Relationships were poorest mid-canopy, where highest average values and highest variability in fuel loading occurred. Fit of data to Gaussian distributions of canopy height profiles facilitated a simpler expression of these parameters for analysis and mapping purposes, with overall r2 values of 0.86 and 0.92 for the profiling and scanning LiDAR datasets, respectively. Our research demonstrates that LiDAR data can be used to generate accurate, three-dimensional representations of canopy structure and fuel loading at high spatial resolution by linking 1-m return height profiles to biometric estimates from field plots.  相似文献   

11.
The goal of the current study was to develop methods of estimating the height of vertical components within plantation coniferous forest using airborne discrete multiple return lidar. In the summer of 2008, airborne lidar and field data were acquired for Loblolly pine forest locations in North Carolina and Virginia, USA, which comprised a variety of stand conditions (e.g. stand age, nutrient regime, and stem density). The methods here implement both field plot-scale analysis and an automated approach for the delineation of individual tree crown (ITC) locations and horizontal extents through a marker-based region growing process applied to a lidar derived canopy height model. The estimation of vertical features was accomplished through aggregating lidar return height measurements into vertical height bins, of a given horizontal extent (plot or ITC), creating a vertical ‘stack’ of bins describing the frequency of returns by height. Once height bins were created the resulting vertical distributions were smoothed with a regression curve-line function and canopy layers were identified through the detection of local maxima and minima. Estimates from Lorey’s mean canopy height was estimated from plot-level curve-fitting with an overall accuracy of 5.9% coefficient of variation (CV) and the coefficient of determination (R2) value of 0.93. Estimates of height to the living canopy produced an overall R2 value of 0.91 (11.0% CV). The presence of vertical features within the sub-canopy component of the fitted vertical function also corresponded to areas of known understory presence and absence. Estimates from ITC data were averaged to the plot level. Estimates of field Lorey’s mean canopy top height from average ITC data produced an R2 value of 0.96 (7.9% CV). Average ITC estimates of height to the living canopy produced the closest correspondence to the field data, producing an R2 value of 0.97 (6.2% CV). These results were similar to estimates produced by a statistical regression method, where R2 values were 0.99 (2.4% CV) and 0.98 (4.9% CV) for plot average top canopy height and height to the living canopy, respectively. These results indicate that the characteristics of the dominant canopy can be estimated accurately using airborne lidar without the development of regression models, in a variety of intensively managed coniferous stand conditions.  相似文献   

12.
近年来ICESat\|GLAS波形数据被广泛地应用于森林生态参数的估算。为了研究大光斑激光雷达数据在复杂地形区域估算森林蓄积量方面的能力,以云南省香格里拉县为研究区域,将GLA01数据处理后得到的平均树高与实测树高及坡度进行对比,探究了坡度对GLAS数据估算平均树高的影响,同时将其与平均树高、光斑范围内森林蓄积量建立关系,初步研究三者之间的关系。结果表明,坡度会降低大光斑激光雷达数据估算森林植被高度的精度,但GLAS数据估算出的树高与实测的平均树高、蓄积量数据仍有较好的相关性,这说明利用GLAS数据估算森林蓄积量有较大的潜力。  相似文献   

13.
Remote sensing of invasive species is a critical component of conservation and management efforts, but reliable methods for the detection of invaders have not been widely established. In Hawaiian forests, we recently found that invasive trees often have hyperspectral signatures unique from that of native trees, but mapping based on spectral reflectance properties alone is confounded by issues of canopy senescence and mortality, intra- and inter-canopy gaps and shadowing, and terrain variability. We deployed a new hybrid airborne system combining the Carnegie Airborne Observatory (CAO) small-footprint light detection and ranging (LiDAR) system with the Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) to map the three-dimensional spectral and structural properties of Hawaiian forests. The CAO-AVIRIS systems and data were fully integrated using in-flight and post-flight fusion techniques, facilitating an analysis of forest canopy properties to determine the presence and abundance of three highly invasive tree species in Hawaiian rainforests.

The LiDAR sub-system was used to model forest canopy height and top-of-canopy surfaces; these structural data allowed for automated masking of forest gaps, intra- and inter-canopy shadows, and minimum vegetation height in the AVIRIS images. The remaining sunlit canopy spectra were analyzed using spatially-constrained spectral mixture analysis. The results of the combined LiDAR-spectroscopic analysis highlighted the location and fractional abundance of each invasive tree species throughout the rainforest sites. Field validation studies demonstrated < 6.8% and < 18.6% error rates in the detection of invasive tree species at  7 m2 and  2 m2 minimum canopy cover thresholds. Our results show that full integration of imaging spectroscopy and LiDAR measurements provides enormous flexibility and analytical potential for studies of terrestrial ecosystems and the species contained within them.  相似文献   


14.
Vegetation canopy heights derived from the SRTM 30 m grid DEM minus USGS National Elevation Data (NED) DTM were compared to three vegetation metrics derived from a medium footprint LIDAR data (LVIS) for the US Sierra Nevada forest in California. Generally the SRTM minus NED was found to underestimate the vegetation canopy height. Comparing the SRTM–NED‐derived heights as a function of the canopy percentile height (shape/vertical structure) derived from LVIS, the SRTM SAR signal was found to penetrate, on average, into about 44% of the canopy and 85% after adjustment of the data. On the canopy type analysis, it was found that the SRTM phase scattering centres occurred at 60% for red fir, 53% for Sierra mixed conifer, 50% for ponderosa pine and 50% for montane hardwood‐conifer. Whereas analysing the residual errors of the SRTM–NED minus the LVIS‐derived canopy height as a function of LVIS canopy height and cover it was observed that the residuals generally increase with increasing canopy height and cover. Likewise, the behaviour of the RMSE as a function of canopy height and cover was observed to initially increase with canopy height and cover but saturates at 50 m canopy height and 60% canopy cover. On the other hand, the behaviour of the correlation coefficient as a function of canopy height and cover was found to be high at lower canopy height (<15 m) and cover (<20%) and decrease rapidly making a depression at medium canopy heights (>15 m and <50 m) and cover (>20% and <50%). It then increases with increasing canopy height and cover yielding a plateau at canopies higher than 50 m and cover above 70%.  相似文献   

15.
基于光学与SAR因子的森林生物量多元回归估算   总被引:1,自引:0,他引:1       下载免费PDF全文
基于福建省Landsat-8 OLI影像,利用混合像元分解模型从实测样地数据中筛选出“纯净”的植被像元,并将筛选出的样地分为针叶林、阔叶林和混交林3种植被类型,依次提取3种不同植被类型“纯净”植被像元的树高、林龄、坡度属性信息以及对应的光学NDVI、RVI植被因子和合成孔径雷达(SAR)HH、HV极化后向散射因子,分别构成不同植被类型的“含光学特征多元因子”(NDVI、RVI、树高、林龄、坡度)和“含SAR特征多元因子”(HH、HV、树高、林龄、坡度),开展对比研究。采用含光学特征的多元因子回归模型先估测不同植被类型的森林叶生物量,然后根据叶生物量与地上生物量的关系间接估测森林地上生物量。同时,采用含SAR特征的多元因子回归模型直接估测森林的地上生物量。最后,对比分析这两组多元回归模型的估测精度。结果表明:不同植被类型的含光学特征多元回归模型的验证精度(针叶林:R2为0.483,RMSE为29.522 t/hm2;阔叶林:R2为0.470,RMSE为21.632 t/hm2;混交林:R2为0.351,RSME为25.253 t/hm2)比含SAR特征多元回归模型的验证精度(针叶林:R2为0.319,RMSE为28.352 t/hm2;阔叶林:R2为0.353,RMSE为18.991t/hm2;混交林:R2为0.281,RMSE为26.637 t/hm2)略高,说明在福建省森林生物量估算中采用含光学特征的多元回归模型(先估测叶生物量进而间接估测地上生物量)比利用含SAR特征的多元回归模型(直接估测地上生物量)更具优势。  相似文献   

16.
基于福建省Landsat-8 OLI影像,利用混合像元分解模型从实测样地数据中筛选出“纯净”的植被像元,并将筛选出的样地分为针叶林、阔叶林和混交林3种植被类型,依次提取3种不同植被类型“纯净”植被像元的树高、林龄、坡度属性信息以及对应的光学NDVI、RVI植被因子和合成孔径雷达(SAR)HH、HV极化后向散射因子,分别构成不同植被类型的“含光学特征多元因子”(NDVI、RVI、树高、林龄、坡度)和“含SAR特征多元因子”(HH、HV、树高、林龄、坡度),开展对比研究。采用含光学特征的多元因子回归模型先估测不同植被类型的森林叶生物量,然后根据叶生物量与地上生物量的关系间接估测森林地上生物量。同时,采用含SAR特征的多元因子回归模型直接估测森林的地上生物量。最后,对比分析这两组多元回归模型的估测精度。结果表明:不同植被类型的含光学特征多元回归模型的验证精度(针叶林:R2为0.483,RMSE为29.522 t/hm2;阔叶林:R2为0.470,RMSE为21.632 t/hm2;混交林:R2为0.351,RSME为25.253 t/hm2)比含SAR特征多元回归模型的验证精度(针叶林:R2为0.319,RMSE为28.352 t/hm2;阔叶林:R2为0.353,RMSE为18.991t/hm2;混交林:R2为0.281,RMSE为26.637 t/hm2)略高,说明在福建省森林生物量估算中采用含光学特征的多元回归模型(先估测叶生物量进而间接估测地上生物量)比利用含SAR特征的多元回归模型(直接估测地上生物量)更具优势。  相似文献   

17.
Regression models relating variables derived from airborne laser scanning (ALS) to above-ground and below-ground biomass were estimated for 1395 sample plots in young and mature coniferous forest located in ten different areas within the boreal forest zone of Norway. The sample plots were measured as part of large-scale operational forest inventories. Four different ALS instruments were used and point density varied from 0.7 to 1.2 m− 2. One variable related to canopy height and one related to canopy density were used as independent variables in the regressions. The statistical effects of area and age class were assessed by including dummy variables in the models. Tree species composition was treated as continuous variables. The proportion of explained variability was 88% for above- and 85% for below-ground biomass models. For given combinations of ALS-derived variables, the differences between the areas were up to 32% for above-ground biomass and 38% for below-ground biomass. The proportion of spruce had a significant impact on both the estimated models. The proportion of broadleaves had a significant effect on above-ground biomass only, while the effect of age class was significant only in the below-ground biomass model. Because of local effects on the biomass-ALS data relationships, it is indicated by this study that sample plots distributed over the entire area would be needed when using ALS for regional or national biomass monitoring.  相似文献   

18.
精确地提取地面高程和植被冠层高度,对于地形地貌、生态学等方面的研究具有重要意义。2018年12月发射的新一代全球生态系统动力学调查雷达(GEDI)为地面高程和植被冠层高度大范围精确提取提供了前所未有的机会。研究旨在利用机载激光雷达数据验证GEDI提取的地面高程和冠层高度精度,并探讨地理定位误差、地形坡度、坡向、植被覆盖度、方位角、采集时间、光束类型和不同森林类型因素对其精度的影响。结果表明:通过校正GEDI数据地理定位误差,可以明显提高其提取的地面高程和冠层高度精度;影响冠层高度提取精度最主要的因素是植被覆盖度,其次是坡度;影响地面高程提取精度的主要因素为坡向、坡度。植被覆盖度大于25%时,数据精度更高;坡度为0°—5°的缓坡地区地面高程和冠层高度精度最高。该研究结果将为GEDI数据筛选与应用提供依据。  相似文献   

19.
The concept for a multi-spectral, full-waveform canopy LiDAR instrument was tested by simulating return waveforms using a model providing ecological sound tree structure (TREEGROW) and a model of leaf optical properties (PROSPECT). The proposed instrument will take measurements at four different wavelengths, which were chosen according to physiological processes altering leaf reflectance and transmittance. The modelling was used to assess both the structural and physiological information content such an instrument could provide, especially whether the normally structure-dominated return waveform would pick up small changes in reflectance at the leaf level. Multi-spectral waveforms were simulated for models of single Scots pine trees of different ages and at different stages of the growing season, including chlorophyll concentration induced changes in leaf optical properties. It was shown that the LiDAR waveforms would not only capture the tree height information, but would also pick up the seasonal and vertical variation of NDVI computed from two of the four MSCL wavelengths inside the tree canopy. The instrument concept was further tested in a simulation of a virtual forest stand constructed of 74 trees of different ages according to measurements taken on a field site being 20 by 20 meter in size. A total of 1521 NDVI profiles were computed and mean NDVI corrected backscatter was compared to the actual canopy profile of the virtual stand. The profiles picked up the seasonal variation of chlorophyll within the canopy, while the return of ground remained unchanged from June to September. Thus, it was shown that a MSCL instrument would be able to separately pick up the physiology of canopy and understorey and/or soil. It was found that occlusion would mask the lower parts of the canopy volume within the stand and the seasonal variation of this occlusion effect was quantified, being larger in September, when the absorption of canopy elements is higher. In addition, it could be demonstrated that a new multi-wavelength LiDAR predictor variable was able to significantly improve the retrieval accuracy of photosynthetically active biomass opposed to using a single-wavelength LiDAR alone.  相似文献   

20.
Detection of individual trees remains a challenge for forest inventory efforts especially in homogeneous, even-aged plantation scenarios. Airborne imagery has mainly been used for detection of individual trees using local maxima filtering, as point spread function and signal-to-noise ratio are smaller than with satellite-borne imagery. This led to the development of a novel approach to local maxima filtering for tree detection in plantation forests in KwaZulu-Natal, South Africa, using satellite remote sensing imagery. Our approach is based on Gaussian smoothing for noise elimination and image classification, that is, natural break classification to determine the threshold for removing pixels of extremely bright and dark areas in the imagery. These pixels are assumed to belong to the background and hinder the search for tree peaks. A semivariogram technique was applied to determine variable window sizes for local maxima filtering within a plantation stand. A fixed window size for local maxima filtering was also applied using pre-determined tree spacing. Evaluation of the various approaches was based on aggregated assessment methods. The overall accuracy using a variable window size was 85%, root mean square error (RMSE)?=?189 trees, whereas a fixed window size resulted in an accuracy of 80%, RMSE?=?258 trees. The approach worked remarkably well in mature forest stands as compared to young forest stands. These results are encouraging for temperate–warm climate plantation forest companies, who deal with even-aged, broadleaf plantations and forest inventory practices that require assessment 1 year before harvesting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号