首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
采用实验室模拟的方法研究来自直流运输系统产生的杂散电流对埋地金属管道腐蚀的影响,并通过强绝缘性能的涂层保护、杂散电流收集网、牺牲阳极保护、排流跨接保护等措施来有效减轻或消除杂散电流对埋地金属管道的腐蚀。结果表明:采取这几种防护措施在一定程度上均可以缓解杂散电流带来的腐蚀问题,其中排流跨接的保护效果最佳。然而在实际施工过程中,单一的防护措施均存在一定的局限性,需要综合考虑杂散电流的大小以及其他管道的情况,采用灵活有效的防护措施。  相似文献   

2.
目的减小杂散电流对南朗段天然气管道的干扰,消除杂散电流腐蚀隐患。方法利用沿线阴极保护电位测试、SCM检测等技术对南朗段管道的杂散电流干扰情况进行检测,并根据检测结果实施排流设计与改造。在009—019测试桩中设计6个排流点,用固态去耦合器排流技术实施排流改造。改造完成后,对排流效果进行验证。结果检测表明,杂散电流最大干扰值达16.839 V,杂散电流密度达393A/m~2,干扰长度为8 km。杂散电流干扰来源于电气化铁路,在铁路运行时间段存在杂散电流干扰,在铁路停运时间段无杂散电流干扰。改造完成后,杂散电流干扰电压降至了4 V以下。结论该排流技术的应用有效减小了南朗段埋地管道的杂散电流干扰,使其达到了国家规定标准,消除了杂散电流腐蚀的隐患,保障了南朗段天然气管线的安全运行。杂散电流干扰的检测与排流技术可以用于消除铁路等对埋地管道杂散电流腐蚀的影响,对受到新建带电结构影响的管道的防护工作具有示范作用。  相似文献   

3.
埋地钢质管道强制电流阴极联合保护研究   总被引:4,自引:4,他引:0  
周兰  陶文亮  李龙江 《表面技术》2015,44(4):118-122
目的验证阴极保护系统在保护目标管道的同时对临近管道造成的杂散电流腐蚀,对比柔性阳极与阳极地床在保护管道的过程中产生的杂散电流污染情况,确定同沟铺设的不同管道联合保护方案。方法通过同一排流设备对相同区域的不同管线进行统一保护,阴极保护系统中的接地装置作为唯一的阳极,多条埋地管线作为电化学电池的阴极实现保护。结果阳极地床产生的杂散电流干扰明显强于柔性阳极材料;排流保护中,两条20 m埋地金属管道达到排流保护的范围时,柔性阳极的排流电压为1.2~1.52 V,远小于碳钢阳极地床的3.5~15 V,能够有效减少防护过程中电能的使用。结论同一阴极系统同时对多条金属管道或金属构筑物进行排流保护的措施可行。  相似文献   

4.
虹桥机场航油管道受地铁直流杂散电流影响,部分管道阴极保护电位无法达到保护要求,管道存在极高的电化学腐蚀风险。对航油管道的干扰情况进行检测,采取以排流保护和阴极保护相结合的综合防护措施。结果表明:管道保护电位达到保护要求,地铁对管道造成的杂散电流干扰危害得到有效消除。  相似文献   

5.
随着我国地铁和管道的不断建设,由杂散电流引起的管道腐蚀问题受到人们广泛关注。因杂散电流分布复杂且影响因素众多,导致埋地管道的有效防护成为实际工程中的一大难题。为了更好地解决杂散电流对埋地管道的干扰问题,详细介绍了杂散电流的分类、腐蚀机理和干扰指标,从地铁和管道2个角度综合论述了国内外学者对杂散电流分布模型、杂散电流源保护和埋地管道排流措施及其杂散电流监测技术的研究现状和进展,明确了进一步完善杂散电流分布模型的精确模拟和发展新型杂散电流监测新技术对于埋地管道的防护意义重大,并对未来管道受杂散电流干扰问题的研究方向进行了展望。研究结果能够为研究人员开展管道杂散电流干扰研究提供参考,具有重要的实际工程意义。  相似文献   

6.
城市轨道交通对埋地管道造成了严重直流杂散电流干扰。为了了解直流杂散电流对管道的影响,选取一段受杂散电流干扰较为严重的管道,采用接地排流和极性排流相结合的方式,在牺牲阳极处安装极性排流器,并连续检测排流前后测试桩处的阴极保护电位。对比数据表明,管道保护电位达到正常值,管道受到有效保护。  相似文献   

7.
由于电气化铁路、以接地为回路的输电系统等的客观存在,不可避免地造成杂散电流的产生,并使埋地管道因杂散电流而产生腐蚀。杂散电流具有强度高、危害大,范围广、随机性强等的特点,文章介绍了对直流杂散电流腐蚀的控制,提出了最大限度地减少干扰泄漏电流、符合安全距离、增加回路电阻、排流保护和其他保护等措施;并对在强电线路、输油管道上、油库等交流杂散电流腐蚀的防护方面提出了数种可采取的保护措施。  相似文献   

8.
杂散电流腐蚀规律及防护技术   总被引:1,自引:0,他引:1  
本文通过现场调查和测试,确定不同情况下高压线路对周围埋地金属管道的杂散电流腐蚀影响规律,并在杂散电流腐蚀调查评价的基础上,对杂散电流影响严重的管道实施相应的排流保护措施,确保埋地金属管道安全平稳运行,减少管道穿孔维修机率,延长了管道的使用寿命。  相似文献   

9.
埋地钢质管道杂散电流的检测与防护   总被引:1,自引:0,他引:1  
随着机动轨车及电力网络的快速发展,其引起的杂散电流给埋地钢质管道造成的快速腐蚀已严重危害管道安全。首先介绍了常见的杂散电流干扰源及其可能造成的严重危害,接着介绍了杂散电流是否存在及干扰源定位的检测判断方法,之后介绍了当前常用的杂散电流防护与排流方法,最后以工程实例说明杂散电流的检测、判断方法和排流改造及效果整个过程。文章系统地从杂散电流的来源、判断、干扰源确定及排流和效果评定介绍了埋地钢质管道杂散电流防护工程的流程。  相似文献   

10.
随着山东经济高速发展,大量高压交直流输电线路和电气化铁路的建设不可避免,这些设备设施产生的交直流杂散电流,造成管道破损点处的加速腐蚀。本文对某管线交流电压和腐蚀电流密度分布规律进行了综合分析,排查管线交流杂散电流干扰源,对交流干扰严重区域进行排流治理,并分析排流效果。结果表明:高压输电线路会形成交流杂散电流造成管道加速腐蚀,在以农田为主的地形环境中,采用网状地床进行交流排流,可以有效降低交流电压,起到明显排流作用。  相似文献   

11.
埋地管道杂散电流排流与阴极保护   总被引:6,自引:0,他引:6  
对鞍山某厂输水管道杂散电流腐蚀进行勘察和分析,并设计了直接排流和电化学阴极保护方法.经6年实践证明,联合保护方法排除了直流干扰,防止了土壤电化学腐蚀,防护效果较好.  相似文献   

12.
随着人们对能源需求的不断增加,输油管道和电力设施建设迅速发展,由于空间地理位置限制,管线与电力设施不可避免地并行铺设,杂散电流对埋地管道的腐蚀问题日益突出.根据干扰源不同,可将杂散电流分为直流干扰与交流干扰.分别从直流和交流杂散电流出发,介绍了杂散电流的主要来源、形成原因及腐蚀危害;了解了二者的腐蚀特征以及腐蚀速率差异.通过调研国内外杂散电流腐蚀的相关研究,对直流腐蚀与交流腐蚀机理进行了系统论述与总结,并对交流腐蚀速率低于直流腐蚀速率的原因进行了分析与探讨.分别介绍了直流杂散电流与交流杂散电流的排流方法与排流装置,分析了每种排流方式的优缺点及适用条件,为实际工况中排流方式的选取提供了参考.最后,针对目前杂散电流腐蚀难点,提出了有待解决问题的方法,并对这一领域的研究方向及发展前景进行了展望,为相关研究提供了借鉴.  相似文献   

13.
重庆某输气管道沿线与多条地铁、轻轨交叉并行,管道阴极保护系统受干扰严重。为了认识管道沿线阴极保护水平和真实干扰情况,对其阴极保护参数进行了现场测试。根据测试结果,分析获得了管道沿线干扰大小的分布情况。基于分析结果,利用智能抗干扰恒电位仪开展现场馈电试验。结果表明,在合理分布辅助阳极地床的情况下,利用强制电流阴极保护和牺牲阳极相结合的方法可以将管道的干扰水平控制在可接受范围内。该研究成果可为油气管道动态直流干扰的分析和防护设计提供参考。  相似文献   

14.
通过测量管道对地电位、电位梯度和杂散电流方向,对成品油管线上的杂散电流进行了全面调查.结果表明,杂散电流干扰程度已经超过了标准规定的必须采取排流措施的警戒指标.为此,采取了牺牲阳极接地式排流,排流效率高于99%,并使管道达到了阴极保护  相似文献   

15.
目的:外加电流阴极保护技术逐渐应用于船舶和海洋结构物防腐领域,但随之而来的杂散电流很可能使平台附近的海底管道本身或者其牺牲阳极阴极保护系统产生电化学腐蚀,缩短海底管道使用寿命,甚至破坏管道本身结构而造成严重的生产事故,因此需要预测外加电流阴极保护系统对附近海底管道及其牺牲阳极阴极保护系统可能造成的不利影响。方法提出一种基于边界元法的预测海底管道杂散电流影响的数值模拟方法,建立包括域内控制方程和对应的边界条件的数学模型,可以计算得到海底管道受杂散电流影响区域的位置和范围,并且得到受影响区域表面保护电位的分布情况。结果通过实验室海底管道模型杂散电流试验测量结果与数值模拟结果进行比较,验证该方法预测海底管道杂散电流影响的准确性,数值模拟仿真结果与试验测量结果最大误差百分比约为1.7%,平均误差百分比小于0.2%。数值模拟计算结果准确地预测了海底管道模型表面保护电位分布情况,预测了导管架平台模型外加电流阴极保护系统对海底管道模型杂散电流的影响情况。结论使用的边界元阴极保护数值模拟技术可以准确预测海底管道杂散电流的影响情况,为海底管道杂散电流影响预测研究提供了有力工具。  相似文献   

16.
杂散电流干扰和阴极保护作用下碳钢腐蚀规律研究   总被引:5,自引:3,他引:2  
目的探讨杂散电流和阴极保护二者共同作用对碳钢腐蚀的影响。方法在碳钢管表面手工涂刷涂层并制造小块破损点,研究Q235碳钢在涂层破损后,受单纯直流杂散电流干扰、单纯阴极保护以及二者共同作用时随时间变化的电化学交流阻抗图谱(EIS),通过图谱信息以及图谱数据拟合进行分析。结果所有条件下,Bode图低频阻抗和Nyquist图容抗弧半径都随时间延长而逐渐增加。通过图谱和数据拟合发现,单纯杂散电流条件下,杂散电流越大,电化学阻抗越小,浸泡15天时,20 m A杂散电流条件下的极化电阻达到200 m A条件下的4倍。阴极保护对杂散电流腐蚀具有防护作用,无论是单独施加阴保,还是杂散+阴保共同作用,-1000 m V(vs.CSE)与-850 m V(vs.CSE)横向对比,总是-1000 m V条件下的极化电阻更高。一定程度上,阴保电位越负,极化电阻越大,保护效果越好。结论在一定范围内,不论是单独施加,还是共同作用,总是杂散电流越小,阴极保护电位越负,对碳钢的保护效果越好,腐蚀程度越轻。利用电化学交流阻抗技术监测管道腐蚀状况是可行的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号