首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 412 毫秒
1.
《Organic Electronics》2014,15(2):399-404
A hole transport material for use in blue phosphorescent organic light-emitting diodes was developed using an ortho linked terphenyl core structure. The ortho linked terphenyl core was modified with ditolylamine to yield the N4,N4,N4″,N4″-tetra-p-tolyl-[1,1′:2′,1″-terphenyl]-4,4″-diamine (TTTDA) hole transport material. TTTDA was compared with common 1,3-bis(N-carbazolyl)benzene (mCP) and showed lower driving voltage and higher power efficiency than mCP. The driving voltage was decreased by as much as 1.5 V and the power efficiency was improved by 25%.  相似文献   

2.
A new terpyridine-based compound of 2,2′,7,7′-tetra([2,2':6′,2″-terpyridin]-4′-yl)-9,9′-spirobi[fluorene] (4oTPSF) was designed and synthesized as the electron transporter in organic light-emitting diodes (OLEDs). 4oTPSF exhibited excellent thermal stability with high glass transition temperature (Tg) of 250 °C and melting temperature (Tm) of 460 °C during the thermal measurement. The excellent thermal stability is attributed to the molecular structure, that the steric effect of rigid twisted spirobiflourene and the connected terpyridine (TPY) resulted in a decrease of the intermolecular π-stacking interaction. The studies on electrical characteristics of electron-only devices revealed that 4oTPSF showed high electron-transporting capability, as good as the conventional electron-transporting material (ETM) 1,3,5-tris(N-phenylbenzimid-azol-2-yl-benzene (TPBi). A series of green phosphorescent OLEDs (PhOLEDs) based on bis(2-phenylpyridine)iridium(III)(2,2,6,6-tetramethylheptane-3,5-diketonate) (Ir(ppy)2tmd) or tris[2-(p-tolyl)pyridine]iridium(III) (Ir(mppy)3) as emitter and 4oTPSF as ETM displayed a turn-on voltage of 2.23 V and a maximum power efficiency of 97.8 l m/W and a half-life (T50) of 101, 5680 and 319 390 h at an initial luminance of 10 000, 1000 and 100 cd/m2, respectively. The lifetime of 4oTPSF-based device was twice more than the lifetime of TPBi-based device.  相似文献   

3.
High-efficiency blue organic light-emitting diodes were reported by adopting two novel iridium phosphors. Due to phosphoryl moiety in ancillary ligands, both complexes (dfppy)2Ir(ppp) and (dfppy)2Ir(dpp) (dyppy = 2-(2,4-difluorophenyl)pyridine, ppp = phenyl(pyridin-2-yl)phosphinate, dpp = dipyridinylphosphinate) own high electron mobility which can balance the injection and transport of carriers. Furthermore, the double light-emitting layers with TcTa (4,4′,4″-tris(carbazol-9-yl)triphenylamine) and 26DCzPPy (2,6-bis(3-(carbazol-9-yl)phenyl)pyridine) hosts broaden the exciton formation zone and suppress efficiency roll-off. The optimized double light-emitting layers devices exhibited decent performances with peak current efficiency near 50 cd/A and external quantum efficiency above 20% as well as negligible efficiency roll-off.  相似文献   

4.
A high triplet energy material derived from carbazole and ortho terphenyl, 3,3′′-di(9H-carbazole-9-yl)-1,1′:2′,1′′-terphenyl (33DCTP), was synthesized as the host material for blue phosphorescent organic light-emitting diodes (PHOLEDs). The 33DCTP host showed high glass transition temperature of 110 °C, high triplet energy of 2.77 eV, the highest occupied molecular orbital of ?6.12 eV and the lowest unoccupied molecular orbital of ?2.52 eV. High efficiency blue PHOLEDs were developed using the 33DCTP host and bis((3,5-difluorophenyl)pyridine) iridium picolinate dopant material, and high quantum efficiency of 23.7% was achieved with a color coordinate of (0.14, 0.28).  相似文献   

5.
To explore energy loss by diffusive triplet excitons in single emissive white phosphorescent organic light-emitting devices, the authors investigated collisional quenching between the electron transport materials 4,7-diphenyl-1,10-phenanthroline (Bphen), 2′,2′,2″-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) (TPBi), or 1,3,5-tri(3-pyrid-3-yl-phenyl)benzene (TmPyPB) and the blue phosphorescent material, 3,5-difluoro-2-(2-pyridyl)-phenyl-(2-carboxypyridyl) Iridium III (FIrpic) spectroscopically in solution. The luminous efficiency and the external quantum efficiency (EQE) of an emissive white phosphorescent organic light-emitting device, in which TmPyPB acted as the electron transport material, was found to be greater than those of devices prepared using Bphen or TPBi due to the lack of collisional quenching. In addition, it was found that to prevent triplet exciton loss, an ETL material should have a low bimolecular quenching rate constant kq of less than 1.458 × 107 s−1 M−1, which is the kq of TmPyPB.  相似文献   

6.
A series of new quinoxaline-containing compounds, namely, 2,3,6,7-tetrakis(3-(pyridin-3-yl)phenyl)quinoxaline (Tm3PyQ), 2,3,6,7-tetrakis(3-(pyridin-4-yl)phenyl)quinoxaline (Tm4PyQ), 1,4-bis(2,3-dimethyl-7-(pyridin-3-yl)quinoxalin-6-yl)benzene (3PyDQB), and 1,4-bis(2,3-dimethyl-7-(pyridin-4-yl)quinoxalin-6-yl)benzene (4PyDQB) were designed and synthesized as electronic transporting materials. The lowest unoccupied molecular orbital (LUMO) distributions of these compounds vary with the locations of quinoxaline moieties, which result in adjustable intermolecular charge-transfer integrals. All the compounds exhibit favorable electron affinity (2.73–2.88 eV) and good thermostability (glass transition temperatures in the range of 112–148 °C). Using these compounds as electron transport layers, the bis(4,6-(difluorophenyl)pyridinato-N,C2′)picolinate iridium(Ⅲ) (Firpic)-based blue phosphorescent organic light emitting diodes (PhOLEDs) achieve good performances with a maximum current efficiency (ηc,max) of 30.2 cd A−1 and a maximum external quantum efficiency (ηext,max) of 14.2%. Moreover, these efficiencies reveal small roll-offs at high luminance.  相似文献   

7.
We synthesized solution-processable iridium complexes having bulky carbazole dendrons, fac-tris[2-{3-(3,5-bis(3,6-di-n-butylcarbazol-9-yl)phenyl)Phenyl)pyridine]iridium (III) (mCP)3Ir and fac-bis[2-{3-(3,5-bis(3,6-di-n-butylcarbazol-9-yl)phenyl)phenyl}pyridine][2-{3-(3,5-di(4-pyridyl)phenyl)phenyl}pyridine]iridium (III) (mCP)2(bpp)Ir. Photoluminescence quantum efficiencies (PLQEs) of (mCP)3Ir and (mCP)2(bpp)Ir in their diluted solutions were 91% and 84%, respectively. They showed high PLQEs of 49% for (mCP)3Ir and 29% for (mCP)2(bpp)Ir even in a neat film. The triplet exciton energy level of the dendronized ligand (2.8 eV), 2-[3-{3,5-bis(3,6-di-n-butylcarbazol-9-yl)phenyl}]pyridine 10, and the dendron (2.9 eV), 3,5-bis(3,6-di-n-butylcarbazol-9-yl)benzene 7, are enough higher than that of the core complex Ir(ppy)3 (2.6 eV). External quantum efficiency (EQE) of single layer light-emitting device with (mCP)2(bpp)Ir was much higher than that of (mCP)3Ir because of better affinity of (mCP)2(bpp)Ir to cathode metal. When an electron transporting and hole-blocking material was used, the EQEs of double layer devices were dramatically improved to 8.3% for (mCP)3Ir and 5.4% for (mCP)2(bpp)Ir at 100 cd/m2.  相似文献   

8.
The complexity of emissive process for five heteroleptic Ir(III) complexes (dfpypy)2Ir(LˆX), where dfpypy = 4-methyl-2',6'-difluoro-2,3'-bipyridine and LˆX = picolinate (1), dipivaloylmethanate (2), picolinic acid N-oxide (3), N,N'-di-tert-butylbenzamidinate (4), or 5-(4′-methylpyridine-2'-yl)-3-trifluoromethyl-1,2,4-triazole (5) (See Fig. 1), is unveiled by density functional theory (DFT) and quadratic response (QR) time-dependent (TD)DFT calculations including spin-orbit coupling (SOC). Besides the emission wavelength, we would like to pay intense attention on the emissive rule. It is found that the emission likely originates from different triplet states rather than only from the lowest Kasha state for complexes 1, 2, 3, and 5, which indicates they obey dual emission scenarios. In contrast, complex 4 follows the Kasha rule. Different from the total qualitative study, the quantum yield is semi-quantitatively determined in this work. The radiative decay rate constants (kr) from possible emissive states are quantitatively determined by the quadratic response method. The triplet potential energy surfaces are constructed to elucidate the factors that affect the temperature-dependent nonradiative rate constants (knr). Complex 4 have the higher quantum yields in all the investigated complexes because of the larger kr and smaller knr. The metal-centered (3MC) triplet state in the deactivation pathways is confirmed to play a vital role in determining the quantum yield.  相似文献   

9.
A new multifunctional blue-emitting terfluorene derivative (TFDPA) featured with triphenylamine groups for hole-transportation and long alkyl chains for solution processability on the conjugation inert bridge centers was reported. TFDPA can give homogeneous thin film by solution process and exhibits high hole mobility (μh  10?3 cm2 V?1 s?1) and suitable HOMO for hole injection. Particularly, TFDPA performs efficient deep-blue emission with high quantum yield (~100% in solution, 43% in thin film) and suitable triplet energy (ET = 2.28 eV), making solution-processed OLED devices of using TFDPA as blue emitter and as host for iridium-containing phosphorescent dopants feasible. The solution-processed nondoped blue OLED device gives saturated deep-blue electroluminescence [CIE = (0.17, 0.07)] with EQE of 2.7%. TFDPA-hosted electrophosphorescent devices performed with EQE of 6.5% for yellow [(Bt)2Ir(acac)], 9.3% of orange [Ir(2–phq)3], and 6.9% of red [(Mpq)2Ir(acac)], respectively. In addition, with careful control on the doping concentration of [(Bt)2Ir(acac)], a solution-processed fluorescence–phosphorescence hybrided two-color-based WOLED with EQE of 3.6% and CIE coordinate of (0.38, 0.33) was successfully achieved.  相似文献   

10.
Bilayered organic field-effect transistors were fabricated by successive vapor-depositions of 1,4-bis{5-[4-(trifluoromethyl)phenyl]thiophene-2-yl}benzene (AC5-CF3) and 5,5″-bis(4-biphenylyl)-2,2′:5′,2″-terthiophene (BP3T). With decreasing thickness of the n-type AC5-CF3 film in contact with the dielectric layer, ambipolar characteristics were improved under both positive and negative gate biases. Two types of asymmetric source/drain electrodes were prepared by either obliquely shadowed lamination or mask-shifted depositions of AlLi and Au. The latter method in which the device was characterized without exposure to air after the electrode deposition of AlLi resulted in remarkable improvement of ambipolarity and reduction of leak currents. Finally, optimized ambipolar mobilities of μe = 5.00 × 10?2 and μh = 1.56 × 10?2 cm2 V?1 s?1) were obtained with 5-nm-thick AC5-CF3 and 30-nm-thick BP3T.  相似文献   

11.
Two novel spiro-based host materials, namely 3-(9,9′-spirobi[fluoren]-6-yl)-9-phenyl-9H-carbazole (SF3Cz1) and 9-(3-(9,9′-spirobi[fluoren]-6-yl)phenyl)-9H-carbazole (SF3Cz2) were designed and synthesized. Due to the meta-linkage of spirobifluorene backbone, both SF3Cz1 and SF3Cz2 possess triplet energies over 2.70 eV, indicating they could serve as suitable hosts for blue and even white phosphorescent organic light-emitting diodes (PHOLEDs). The fabricated bis(4,6-(difluorophenyl)-pyridinato -N,C′)picolinate (FIrpic) based PHOLEDs hosted by SF3Cz1 and SF3Cz2 exhibited excellent performance with maximum external quantum efficiencies (EQEs) of 18.1% and 19.7%, respectively. Two-color warm white PHOLEDs fabricated by utilizing SF3Cz1 and SF3Cz2 as hosts also achieved high EQEs and low efficiency roll-offs. The results demonstrate that SF3Cz1 and SF3Cz2 are promising hosts for blue and white PHOLEDs.  相似文献   

12.
Four novel bipolar hosts (DTAFNBI, m-DTAFNBI, DTAFCBI and m-DTAFCBI) comprising a hole-transport ditolylphenylamino donor and an electron-transport 1,2-diphenylbenzimidazole acceptor connected via a fluorene spacer were synthesized and characterized. Through the different linkage topologies of phenylbenzimidazole, the thermal, photophysical, and electrochemical properties can be fine-tuned. The saturated fluorene spacer along with the ditolylphenylamino donor and the phenylbenzimidazole acceptor endowed high triplet energies (ET = 2.47–2.62 eV, recorded in neat film at 20 K) and bipolar transporting abilities. Furthermore, the tetragonal geometry given by the sp3-hybridized C9 of fluorene encumbered intermolecular packing and led to excellent thermal and morphological stabilities (Td = 379–392 °C, corresponding 5% weight loss; Tg = 148–162 °C). As a result, these bipolar materials were utilized as universal hosts for red, yellow, and blue (RYB) phosphorescent OLEDs, showing maximum external quantum efficiencies (ηext) of 9.6%, 14.7%, and 18.9% for blue (FIrpic), yellow (m-(Tpm)2Ir(acac) and red [Os(bpftz)2(PPhMe2)2, OS1], respectively. In addition, white organic light-emitting diodes combining a blue emitter (FIrpic) and yellow emitter m-(Tpm)2Ir(acac) and a red emitter (OS1) within a single emitting layer were also fabricated which also exhibited good efficiencies (9.5–13.7%, 15.1–23.5 cd A−1, 13.3–23.9 lm W−1) with relatively low efficiency roll off.  相似文献   

13.
Three new bipolar molecules composed of carbazole, triarylamine, and bipyridine were synthesized and utilized as host materials in multi-color phosphorescent OLEDs (PhOLEDs). These carbazole-based materials comprise a hole-transport triarylamine at C3 and an electron-transport 2,4′- or 4,4′-bipyridine at N9. The different bipyridine isomers and linking topology of the bipyridine with respect to carbazole N9 not only allows fine-tuning of physical properties but also imparts conformational change which subsequently affects molecular packing and carrier transport properties in the solid state. PhOLEDs were fabricated using green [(ppy)2Ir(acac)], yellow [(bt)2Ir(acac)], and red [(mpq)2Ir(acac)] as doped emitters, which showed low driving voltage, high external quantum efficiency (EQE), and extremely low efficiency roll-off. Among these new bipolar materials, the 2Cz-44Bpy-hosted device doping with 10% (ppy)2Ir(acac) as green emitting layer showed a high EQE of 22% (79.8 cd A−1) and power efficiency (PE) of 102.5 lm W−1 at a practical brightness of 100 cd m−2. In addition, the device showed limited efficiency roll-off (21.6% EQE) and low driving voltage (2.8 V) at a practical brightness of 1000 cd m−2.  相似文献   

14.
A new star-shaped D–π–A molecule, tris{4-[5′′-(1,1-dicyanobut-1-en-2-yl)-2,2′-bithiophen-5-yl]phenyl}amine N(Ph-2T-DCN-Et)3, with high efficiency potential for photovoltaic applications was synthesized. As compared to its analogue S(TPA-bT-DCN), it showed stronger absorption in the region of 350–450 nm and a lower lying highest occupied molecular energy level (HOMO). Solution-processed organic solar cells (OSCs) based on a blend of N(Ph-2T-DCN-Et)3 and PC70BM resulted in a high PCE of 3.1% without any post-treatment. The PCE of N(Ph-2T-DCN-Et)3 based solar cells was further improved to 3.6% under simulated AM 1.5 by addition of a new additive 4-bromoanisole (BrAni).  相似文献   

15.
Authors demonstrated impact of series small ratio donors in C60 matrix on photovoltaic (PV) performance. A series of donor materials such as N′,N′-Di-1-naphthyl-N′,N′-diphenyl-1,1′-biphenyl-4,4′-diamine (NPB), 4,-4′-Bis(carbazol-9-yl) (CBP), 4,4′,4″-tris(N-3-methylphenyl-N-phenyl-amine)triphenyl-amine (m-MTDATA), copper phthalocyanine (CuPc) and 4,4,4-tris(n-carbazolyl-triphenyl-amine) (TCTA) were blended with fullerene (C60) by different ratio. It was found that although donor–acceptor (DA) interface in planar heterojunction (PHJ) structure increased charge separation probability at the near interface section, the PV response was stronger for bulk heterojunction (BHJ) with low-ratio donor doping into C60 matrix in which exciton dissociation can take place immediately after photon absorption without a diffusion progress. The power conversion efficiency (PCE) of BHJ-PV cell based on NPB donor reaches 2.25%, which is double of that of the PHJ cell. In terms of our series results we obtained that ΔEHOMO (HOMOC60–HOMOdonor) between C60 acceptor and donors would provide a maximal influence on achievement of a maximal PCE and an optimal ΔEHOMO locates around 0.8 eV, which implies that dissociation of photo-exciton at C60 matrix needs feasible driving force. More detail mechanism was also argued.  相似文献   

16.
A heteroleptic polypyridyl ruthenium complex ‘cis-Ru(4,4′-bis(3,5-bis(5-hexylthiophen-2-yl)phenyl)-2,2′-bipyridine)(4,4′-dicarboxyl-2,2′-bipyridine) (NCS)2, MC102′, with a high molar extinction coefficient was synthesized and characterized with IR, 1H NMR, Mass, UV–Vis spectroscopy. The test cell DSSC devices constructed with 0.23 cm2 active area photo-electrode in combination with an electrolyte composed of 0.6 M dimethylpropyl-imidazolium iodide (DMPII), 0.05 M I2, and 0.1 M LiI in acetonitrile yielded solar to electric energy conversion efficiency (η) of 4.42% under Air Mass (AM) 1.5 sunlight, while the reference N719 sensitized solar cell fabricated and evaluated under similar conditions exhibited η-value of 5.84%.  相似文献   

17.
The scarcity of high efficient red-emitting phosphorescent emitters, especially for deeply red emitter, has become the major road stone to block the further development of organic light-emitting diodes. Most of studies have been devoted to developing new Ir(III) complexes by variation of primary ligands. The ancillary ligand has attracted less attention. Four Ir(III) complexes, (DPQ)2Ir(pic) (1), (DPQ)2Ir(tmd) (2), (DPQ)2Ir(ozl) (3), and (DPQ)2Ir(iml) (4) with different ancillary ligands are explored from both emissive rule and quantum yields, where DPQ is 2,4-diphenylquinoline with a CF3 group at meta position of the phenyl ring, pic is picolinate, tmd is 2,2,6,6-tetramethylheptane-3,5-diketonate, ozl is 2-(4,5-dihydrooxazol-2-yl)phenol, and iml is 2-(1-ethyl-4,5-dihydro-1H-imidazol-2-yl)phenol. Radiative rate constant for phosphorescence (kr) is calculated by quadratic response time-dependent density functional theory (QR-TDDFT). The transition dipole moment, spin-orbit coupling matrix element, and singlet-triplet splitting energy related with the kr are also analyzed to further uncover the crucial factors to affect the kr. While the nonradiative rate constant for phosphorescence (knr) is qualitatively estimated from both temperature-independent nonradiative rate constant (knr) and temperature-dependent nonradiative rate constant (knr(T)) viewpoints. The emissive wavelength of new designed Ir(III) complex 4 locates in the deeply red region. Moreover, it has the larger quantum yield because of both larger kr and smaller knr. The variation of ancillary ligand is also an advisable choice to develop red-emitting Ir(III) complex with ideal quantum efficiency.  相似文献   

18.
We designed and synthesized Pt-Pytz, a blue phosphorescent Pt (II) complex having 6,6-(1-methoxyethane-1,1-diyl)di (2-(3-(trifluoromethyl)-1H-1,2,4-triazol-5-yl)pyridine) as a tetradentate ligand, and investigated its photophysical, electrochemical, and electroluminescent properties. The complex showed an emission maximum at 449 nm in dichloromethane solution, with a high photoluminescence quantum efficiency of 0.81. Furthermore, the photoluminescence spectrum of Pt-Pytz in the film state contains no additional excimer emission in the long-wavelength region, indicating suppressed molecular aggregation in the solid state. An organic light-emitting diode based on Pt-Pytz as a blue dopant (10% doping) achieved the best external quantum efficiency of 7.0% with a power efficiency of 6.4%, a current efficiency of 11.2 cd/A, and the CIE coordinates of (0.146, 0.218).  相似文献   

19.
《Organic Electronics》2014,15(8):1862-1867
An efficient and stable red phosphorescent organic light emitting diode was developed using a tetradentate cyclometalated platinum complex. Devices employing the phosphorescent molecule, platinum(II)-9-(4-methylpyridin-2-yl)-2-(3-(quinolin-2-yl)phenoxy)-9H-carbazole (PtON11Me), yielded high external quantum efficiencies and high operational lifetimes. A maximum EQE of 12.5% and color coordinates CIE (x = 0.61, y = 0.36) was achieved in devices employing efficient hole blocking and transporting materials and a high operational lifetime of T0.97  3200 h was achieved in devices utilizing electrochemically stable hole blocking and transporting materials.  相似文献   

20.
Solution-processed small-molecule white organic light-emitting diodes (WOLEDs) were fabricated with a co-host of hole-transporter 4,4′,4″-Tris(carbazol-9-yl)triphenylamine (TCTA) and electron-transporter 2,7-Bis(diphenylphosphoryl)-9,9'-spirobifluorene (SPPO13). By doping 15 wt% FIrpic or F3Irpic and 0.5 wt% Ir(MDQ)2(acac) in to the TCTA/SPPO13 host, highly efficient white OLEDs have been achieved which exhibit nearly identical emission spectra at different luminance. The F3Irpic and Ir(MDQ)2(acac)-based WOLED shows maximum efficiencies of 40.9 cd/A, 36.7 lm/W and 16.9%, and even high efficiencies of 30.1 cd/A and 12.3% at the practical luminance of 1000 cd/m2, which are among the highest efficiencies of the solution-processed small-molecule WOLEDs. These results demonstrate a convenient way to realize solution-processed WOLEDs with high efficiency and high spectral stability through full small-molecule materials system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号