首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a water holdup prediction method based on support vector regression (SVR) for horizontal oil-water two-phase flow when using a bicircular conductance probe array that consists of 24 conductance probes. The support vector machine (SVM) was employed to establish a nonlinear SVR model mapping the probe array responses into water holdup directly. Experiments were carried out in the 16 m long and 125 mm inner diameter horizontal pipe of an industrial scale experimental setup. The experimental data obtained under 220 flow conditions were first divided into modeling data set and comparing data set. The modeling data set is used for establishing a nonlinear SVR and a linear least squares regression (LSR) models, while the comparing data set is used for comparing both models with the equi-weight and optimal weight estimate methods. Comparison results obtained by using the comparing data set show that when the binary data of the probes’ responses are used only, the measurement accuracy of the optimal weight estimate method is the best. If the analog data can be obtained, the measurement accuracy of both regression methods are better than those of both weighting estimate methods, especially, the nonlinear SVR method provide the best measurement accuracy.  相似文献   

2.
Oil-in-water two-phase flows are often encountered in the upstream petroleum industry. The measurement of phase flow rates is of particular importance for managing oil production and water disposal and/or water reinjection. The complexity of oil-in-water flow structures creates a challenge to flow measurement. This paper proposes a new method of two-phase flow metering, which is based on the use of dual-modality system and multidimensional data fusion. The Electrical Resistance Tomography system (ERT) is used in combination with a commercial off-the-shelf Electromagnetic Flow meter (EMF) to measure the volumetric flow rate of each constituent phase. The water flow rate is determined from the EMF with an input of the mean oil-fraction measured by the ERT. The dispersed oil-phase flow rate is determined from the mean oil-fraction and the mean oil velocity measured by the ERT cross-correlation velocity profiling. Experiments were carried out on a vertical upward oil-in-water pipe flow, 50 mm inner-diameter test section, at different total liquid flow rates covering the range of 8–16 m3/hr. The oil and water flow rate measurements obtained from the ERT and the EMF are compared to their respective references. The accuracy of these measurements is discussed and the capability of the measurement system is assessed.  相似文献   

3.
In the present study, we propose a parallel-wire microwave resonant sensor (PMRS) with transmission-through configuration for water holdup measurement in high water-cut oil-in-water flows. Through the finite element method (FEM) analysis using HFSS software, the variations of sensor responses for changing water holdup and salinity are investigated. In this manner, the optimum working frequency of microwave resonant sensor is tuned to 1.8 GHz. With the designed PMRS measurement system, an experimental test of vertical high water-cut oil-in-water flows is conducted in a 20 mm inner diameter pipe, through which the relationship among dimensionless normalized phase output of PMRS which reflects the water holdup information, water-cut and total flow rate are investigated. The results show that PMRS presents a high resolution in measurement of water holdup. By establishing statistics models, water-cut can be accurately predicted. Besides, PMRS can still retain high resolution under the circumstance of high salinity. To conclude, PMRS can possess high resolution in measurement of water holdup with both high water-cut and salinity variation in oil-in-water flows, and satisfactory water-cut measurement results can be achieved.  相似文献   

4.
Previous work has described the use of Coriolis mass flow metering for two-phase (gas/liquid) flow. As the Coriolis meter provides both mass flow and density measurements, it is possible to resolve the mass flows of the gas and liquid in a two-phase mixture if their respective densities are known. To apply Coriolis metering to a three-phase (oil/water/gas) mixture, an additional measurement is required. In the work described in this paper, a water cut meter is used to indicate what proportion of the liquid flow is water. This provides sufficient information to calculate the mass flows of the water, oil and gas components. This paper is believed to be the first to detail an implementation of three-phase flow metering using Coriolis technology where phase separation is not applied.Trials have taken place at the UK National Flow Standards Laboratory three-phase facility, on a commercial three-phase meter based on the Coriolis meter/ water cut measurement principle. For the 50 mm metering system, the total liquid flow rate ranged from 2.4 kg/s up to 11 kg/s, the water cut ranged from 0% to 100%, and the gas volume fraction (GVF) from 0 to 50%. In a formally observed trial, 75 test points were taken at a temperature of approximately 40 °C and with a skid inlet pressure of approximately 350 kPa. Over 95% of the test results fell within the desired specification, defined as follows: the total (oil+water) liquid mass flow error should fall within ±2.5%, and the gas mass flow error within ±5.0%. The oil mass flow error limit is ±6.0% for water cuts less than 70%, while for water cuts between 70% and 95% the oil mass flow error limit is ±15.0%.These results demonstrate the potential for using Coriolis mass flow metering combined with water cut metering for three-phase (oil/water/gas) measurement.  相似文献   

5.
Within the framework of a research project regarding investigations on a high-pressure Coriolis mass flow meter (CMF) a portable flow test rig for traceable calibration measurements of the flow rate (mass - and volume flow) in a range of 5 g min−1 to 500 g min−1 and in a pressure range of 0.1 MPa to 85 MPa was developed. The measurement principle of the flow test rig is based on the gravimetrical measuring procedure with flying-start-and-stop operating mode. Particular attention has been paid to the challenges of temperature stability during the measurements since the temperature has a direct influence on the viscosity and flow rate of the test medium. For that reason the pipes on the high-pressure side are double-walled and insulated and the device under test (DUT) has an enclosure with a separate temperature control. From the analysis of the first measurement with tap water at a temperature of 20 °C and a pressure of 82.7 MPa an extensive uncertainty analysis has been carried out. It was found that the diverter (mainly due to its asymmetric behaviour) is the largest influence factor on the total uncertainty budget. After a number of improvements, especially concerning the diverter, the flow test rig has currently an expanded measurement uncertainty of around 1.0% in the lower flow rate range (25 g min−1) and 0.25% in the higher flow rate range (400 g min−1) for the measurement of mass flow. Additional calibration measurements with the new, redesigned flow test rig and highly viscous base oils also indicated a good agreement with the theoretical behaviour of the flow meter according to the manufacturers׳ specifications with water as test medium. Further improvements are envisaged in the future in order to focus also on other areas of interest.  相似文献   

6.
Wire-mesh sensors (WMS), developed at HZDR [4], [13], are widely used to visualize two-phase flows and measure flow parameters, such as phase fraction distributions or gas phase velocities quantitatively and with a very high temporal resolution. They have been extensively applied to a wide range of two-phase gas–liquid flow problems with conducting and non-conducting liquids. However, for very low liquid loadings, the state of the art data analysis algorithms for WMS data suffer from the comparably low spatial resolution of measurements and from boundary effects, caused by e.g. flange rings – especially in the case of capacitance type WMS. In the recent past, diverse studies have been performed on two-phase liquid–gas stratified flow with low liquid loading conditions in horizontal pipes at the University of Tulsa. These tests cover oil–air flow in a 6-inch ID pipe and water–air flow in a 3-inch ID pipe employing dual WMS with 32×32 and 16×16 wires, respectively. For oil–air flow experiments, the superficial liquid and gas velocities vary between 9.2 m/s≤νSG≤15 m/s and 0.01 m/s≤νSL≤0.02 m/s, respectively [2]. In water–air experiments, the superficial liquid and gas velocities vary between 9.1 m/s≤νSG≤33.5 m/s and 0.03 m/s≤νSL≤0.2 m/s, respectively [17], [18]. In order to understand the stratified wavy structure of the flow, the reconstruction of the liquid–gas interface is essential. Due to the relatively low spatial resolution in the WMS measurements of approximately 5 mm, the liquid–gas interface recognition has always an unknown uncertainty level. In this work, a novel algorithm for refined liquid–gas interface reconstruction is introduced for flow conditions where entrainment is negligible.  相似文献   

7.
Two miniaturized liquid film sensors (MLFS) based on electrical conductance measurement have been developed and tested. The sensors are non-intrusive and produced with materials and technologies fully compatible and integrable with standard microfluidics. They consist of a line of 20 electrodes with a purpose-designed shape, flush against the wall, covering a total length of 5.00 and 6.68 mm. The governing electronics achieve 10 kHz of time resolution. The electrode spacing of the two sensors is 230 μm and 330 μm, which allows measurements of liquid films up to 150 μm and 400 μm for sensors MLFSA and MLFSB, respectively. The sensor characteristics were obtained by imposing static liquid films of known thickness on top of the actual sensor. Further dynamic measurements of concurrent air-water flow in a horizontal microchannel were performed. The line of electrodes is placed across the flow direction with an angle of 3.53° from the direction of flow, allowing for a spatial resolution perpendicular to the flow of 14.2 μm for sensor MLFSA and 20.5 μm for sensor MLFSB. The high time and spatial resolution allows for fast and accurate detection of the presence of bubbles, and even measurement of film thickness and bubble velocity. Further information, such as the bubble shape, can be gathered based on the shape of the liquid layer underneath the bubble, which is particularly important for heat transfer studies in microchannels.  相似文献   

8.
A highly integrated, Field Programmable Gate Array (FPGA) based induction measurement system for conductive flow level measurement is presented. Exploiting under-sampling and digital I/Q demodulation techniques, the system use direct digital sampling and can operate at multiple frequencies (from 100 kHz to over 10 MHz). Details are discussed in both hardware and software aspects. Simulations and experiments at 2.6 MHz and 8.3 MHz are carried out using saline solutions with conductivities of 1.8 S/m and 4.3 S/m to verify the performance of the system. Application of the system for saline level monitoring is implemented and studied, which further proves the applicability of the system in low conductivity object measurements.  相似文献   

9.
Combination of different extraction methods is an interesting work in the field of sample pretreatment. In the current study, for the first time, solid phase extraction combined with solvent-based de-emulsification dispersive liquid–liquid microextraction (SPE-SD-DLLME) was developed for preconcentration and trace detection of cadmium in water samples using flame atomic absorption spectrophotometry (FAAS). The adsorbed cadmium ions on prepared SPE (75 mL of aqueous solution) were eluted by optimized elution solvent and introduced to the second microextraction step. The effective variables of SPE including the pH of sample, flow rates, type, concentration and volume of the eluent and the effect of potentially interfering ions of the separation of cadmium were evaluated and optimized. Also, several factors that influence the SD-DLLME step such as pH, neocuproine concentration (the cadmium binding ligand), type of dispersed/de-emulsifier solvent, volume of disperser/de-emulsifier solvent and type and volume of extraction solvents were investigated. SPE-SD-DLLME provides a preconcentration factor of 165 for cadmium ions. Calibration plot was linear in the range of 0.1–50 μg L−1 with correlation of determination (r2) of 0.988. The precision and limit of detection of proposed method were 5.1% (RSD%, n = 8) and 0.03 μg L−1, respectively.  相似文献   

10.
This paper describes a primary standard for liquid micro-flow, which covers the flow rate range from 1 ml/min down to 100 nl/min with uncertainties in the range from 0.1% to 0.6% (coverage factor 95%). To realize stable flow rates, METAS applies the principle of generating flow by means of a constant pressure drop over a capillary tube according to the law of Hagen–Poiseuille. The constant pressure drop is mainly possible due to the fact that the relative pressure at the outlet needle remains constant as the outlet needle is positioned just above the beaker collecting the water. The special beaker and the adjustments for the weighing zone to control evaporation will be discussed in the paper as well as measurement results from flow sensors and flow generators, which highlight the repeatability and the reproducibility of the facility.  相似文献   

11.
Impedance plethysmography, also known as the impedance test, the blood flow test, or impedance phlebography, is a non-invasive test that measures blood flow in the vessels of the peripheral vascular system by monitoring changes in electrical resistance (impedance) to detect deep thrombosis (blood clots or thrombophlebitis).The aim of our study was to use this technique for assessing changes in blood flow in the lower limbs in healthy subjects wearing protective footwear while walking.The test was performed on a group of 30 professional firefighters (age 30.7 ± 4.5, BMI 25.1 ± 3). Blood flow was monitored in the peripheral vascular system of the lower limbs during walking on a treadmill. The testing protocol consisted of the following three phases: warm-up, exercise, and rest.In order to identify differences between the three phases of the study, analysis of variance (ANOVA) with repeated measures was conducted. The statistically significant parameters of blood flow in the lower limbs were the impedance ratio (IR) (p < 0.001), slope ratio (SR) (p < 0.001), crest width (CW) (p < 0.001), and alternative blood flow (ABF) (p < 0.001). All of them showed an upward trend.The study confirmed the validity of impedance plethysmography as a non-invasive technique for measuring blood flow changes in the lower limbs in healthy subjects, especially under non-steady-state conditions, such as walking. This technique provides valuable quantitative data.Therefore, impedance plethysmography may be considered a reliable research method enabling evaluation of local blood flow in healthy subjects under different conditions.  相似文献   

12.
The number of slug units that traverses a particular point at a given time within a defined pipe cross-section is known as slug frequency. The behaviour of this critical parameter for two-phase flow in high viscosity oils is significantly different from those of conventional oils (of less than 1 Pa s). In this experimental investigation, new data on slugging frequency in high viscosity oil-gas flow are reported. Scaled experiments were carried out using a mixture of air and mineral oil in a 17 m long horizontal pipe of 0.0762 m ID. A high-speed Gamma Densitometer of frequency of 250 Hz was used for data acquisition over a time interval of 30 s. For the range of flow conditions investigated, increase in oil viscosity was observed to strongly influence the slug frequency. Comparison of the present data with prediction models available in the literature revealed discrepancies. A new correlation incorporating the effect of viscosity on slug frequency has been proposed for horizontal flow. The proposed correlation will improve the prediction of slug frequency in high viscosity oils.  相似文献   

13.
In the hardware-in-loop simulation of aero-engine control system where the real fuel regulator is engaged, it's crucial to measure the real-time flow rate. In view of this, a flow meter with high precision and fast response is important. In this paper, modeling and experiments are conducted to verify the dynamic characteristics of a turbine flow meter (TFM). For the modeling part, driving torque and resistance torques are analyzed to derive the kinetic equation of TFM. Simulation with the kinetic equation shows good dynamic performance of TFM. In experiments, a workbench is designed to generate step-type flow and sine-type flow for identification in time domain and frequency domain. Results show that the settling time for TFM is no more than 100 ms and its band-with is over 4.61 Hz. Compared with the settling time of a main fuel valve and the band-width of a main fuel control loop, that is, 1.2 s and 2 Hz respectively, TFM is considered to be adaptive to measure the fuel of aero-engine.  相似文献   

14.
An automated, miniature, S-type Pitot tube system was created to obtain fluid velocity profiles at low flows in equipment having limited optical access, which prevents the use of standard imaging techniques. Calibration of this non-standard Pitot tube at small differential pressures with a custom, low-pressure system is also described. Application of this system to a vertical, high-pressure, water tunnel facility (HWTF) is presented. The HWTF uses static flow conditioning elements to stabilize individual gaseous, liquid, or solid particles with water for optical viewing. Stabilization of these particles in the viewing section of the HWTF requires a specific flow field, created by a combination of a radially expanding test section and a special flow conditioner located upstream of the test section. Analysis of the conditioned flow field in the viewing section of the HWTF required measurements across its diameter at three locations at 1 mm spatial resolution. The custom S-type Pitot tube system resolved pressure differences of <100 Pa created by water flowing at 5–30 cm/s while providing a relatively low response time of ~300 s despite the small diameter (<1 mm) and long length (340 mm) of the Pitot tube needed to fit the HWTF geometry. Particle imaging velocimetry measurements in the central, viewable part of the HWTF confirmed the Pitot tube measurements in this region.  相似文献   

15.
This paper presents the design and calibration of an ISO non-compliant orifice plate flowmeter whose intended use is for respiratory function measurements in the bidirectional air flow range ±9 L/min.The novelty of the proposed sensor consists of a plate beveled in both upstream and downstream sides: a symmetrical geometry is adopted in order to perform bidirectional measurements of flow rate. A mathematical model is introduced to quantify the influence of temperature on the sensor output. Four different positions of the pressure static taps are evaluated in order to maximize bidirectionality. An index is also introduced in order to quantitatively estimate the anti-symmetry of the sensor's response curve.Trials are carried out to evaluate the influence on sensor output of air temperatures (22 °C, 30 °C and 37 °C) at different values of relative humidity (5%, 55% and 85%). Experimental data show a quite good agreement with the theoretical model (R2>0.98 in each condition).The influence of air temperature on the sensor output is minimized by introducing a correction factor based on the theoretical model leading to measurement repeatability better than 2% in overall range of calibration. The mean sensitivity in the calibration range is about 2 kPa L−1·min allowing to obtain a sensor discrimination threshold lower than 0.2 L/min in both directions. The time constant of the whole measurement system, equal to 2.40±0.03 ms, leads to a bandwidth up to 80 Hz making the sensor suitable for respiratory function measurements.  相似文献   

16.
Sintered and sintered/gas nitrided cylinders made of low alloyed chromium steel Astaloy CrL + 0.45 C at 7.25 g/cm3 density, have been tested for scuffing resistance and wear rate in a crossed cylinders test setup lubricated with a commercial SAE 10W40 engine oil at 90 °C. The results show large potential of 1 h gas nitriding of the sintered chromium steel cylinders. The nitrided cylinders experienced safe wear at 1000 MPa and scuffing at 1100 MPa at 2.5 m/s. At 0.5 and 0.1 m/s at least up to 800 MPa the wear was mild, as sintered chromium cylinders showed scuffing at pressure lower than 320 MPa and limited wear at 0.5 and 0.1 m/s.  相似文献   

17.
Two phase flow regime identification and void fraction measurement is an area of considerable interest because of its wide applications in process industries. The principle involved in dielectric measurement is that the two phase flow regime is characterized by the changes in effective permittivity of the two phase fluid mixture. In the present work, a pair of parallel copper electrodes on the two sides of a glass tube acts as a dielectric sensor. As the void fraction in the glass tube changes, the effective permittivity of the medium changes. This causes a variation in the capacitance value across the electrodes. A standard IC, Oscillator 555 is employed as a tool to generate a rectangular wave. The variation in dielectric constant is analyzed based on the change in time period of the trough (T0) of the rectangular wave that is recorded online by a data acquisition system. Experiments were performed in a 4.7 mm diameter tube with air-water, air-palmolein oil two phase fluids to study the variation in dielectric constant which is indicated as a change in time period of trough. The effect of conductivity of water on the capacitance variation is examined with water having Total dissolved solids (TDS) which is a measure of movable ions in the range 10-4000 ppm (16 µS/cm–6.3 mS/cm). The novelty in the present work is the determination of changes in capacitance value based on the change in time of trough of the rectangular wave. The technique does not require amplification or a filtering circuit, thereby leading to a precise identification of two phase flow regime.  相似文献   

18.
The air–water two-phase flow is investigated in a bubble column with a height of 2 m and a diameter of 0.282 m by using the Electrical Resistance Tomography (ERT) technique. The flow characterization are measured by applying ERT sensors of three vertical sections with superficial gas velocities in the range 0.027–0.156 m/s. Based on the cross-correlation technique and dynamic gas disengagement (DGD) theory, the bubble Saunter diameters are obtained and the local axial velocity about two phases flow can be calculated. The results show that with increased gas superficial velocity the distribution of bubble size is gradually widespread. Moreover, the local velocity of gas bubble swarm has a center peak distribution with increased gas superficial velocity.  相似文献   

19.
The main objective of this study was to investigate the applied properties of particleboard panels made from bagasse, which were either treated or not treated with gaseous ozone (O3). Variable parameters were ozone exposure time (1–3 min) at 9 ppm and storage period (1–5 months). Other parameters such as resin content (12 wt%), hardener content (1 wt%), type of hardener (NH4Cl), press closing time (5 mm/s), board density (0.70 g/cm3), and press pressure (30 kg/m2) were held constant. The experimental panels were tested for their mechanical properties including modulus of elasticity (MOE), modulus of rupture (MOR); and internal bonding strength (IBS) and physical properties in terms of water absorption (WA) and thickness swelling (TS) according to the procedures defined by EN standards. Overall results showed that all panels made from treated bagasse exceeded the EN standards for MOE, MOR, and IBS. However, WA and TS values decreased after ozone pretreatment compared to the un-treated (control) panels. Application of Duncan’s Multiple Range Test for the mean values of the results showed that the effects of both variables, except their interactions, on the mechanical and physical properties were highly significant (p  0.01%). All the mechanical properties of the panels decreased when the treatment duration increased from 1 to 5 months.  相似文献   

20.
In this study, for active control of flow, the effect of the Dielectric Barrier Discharge (DBD) plasma actuator consisting of intermittent electrodes in the lengthwise direction of circular cylinder is investigated. The experiments were conducted in the wind tunnel at the Reynolds numbers between 6000 and 12,500. In three different cases, the lengths of the actuators and gaps between them are chosen as 20 mm, 25 mm, and 50 mm, respectively. The applied voltage is in the range of 4.5−7.5 kVpp and the constantly applied frequency is 3.5 kHz for producing the plasma. By using the equally placed DBD plasma actuators for the circular cylinder, 2-dimensional flow structure in the wake region is converted into 3-dimensional flow structure that leads to reduce in the mean and fluctuating forces acting on the cylinder. The wake region is narrower than the plain cylinder at the middle point of the electrode spanwise position and the width of the wake region increases at the end point of the electrode spanwise position.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号