首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
采用高温固相法制备了Ba_2B_2O_5:Ce~(3+),Dy~(3+)荧光粉,研究了荧光粉的发光特性及发光机理。结果表明:Ba_2B_2O_5:Dy~(3+)没有表现出长余辉发光特征,当掺杂Ce~(3+)于Ba_2B_2O_5:Dy~(3+)后,荧光粉材料仍呈现为白色发光特征;但是Ba_2B_2O_5:Ce~(3+),Dy~(3+)表现出了明显的黄绿色长余辉发光特性,该发光主要由陷阱所释放导带电子与发光中心Dy~(3+)的直接复合而产生的。研究结果将对长余辉发光材料的发展具有很好的参考意义。  相似文献   

2.
采用高温固相法制备了双色可调荧光粉MgY_2Al_4SiO_(12):Eu~(2+),Ce~(3+),并对其晶体结构和发光特性进行了研究。在340 nm紫外光激发下荧光粉的发射光谱由两个谱带组成,以445 nm为主峰的蓝光发射带归属于Eu~(2+)的4f~65d~1→4f~7能级跃迁,峰值位于565 nm的黄光发射带则对应于Ce~(3+)的5d→4f(~2F_(2/7),~2F_(2/5))跃迁。根据Dexter共振能量传递理论和Reisfeld近似计算得到Eu~(2+),Ce~(3+)之间存在电偶极-电偶极能量传递过程。当Eu~(2+)和Ce~(3+)的掺杂浓度分别为0.01和0.06时,荧光粉的色坐标位置落在黄绿光区域,并可以通过改变基质中Eu~(2+)和Ce~(3+)的摩尔比来调节荧光粉的色坐标。MgY_2Al_4SiO_(12):Eu~(2+),Ce~(3+)是一种适用于紫外芯片的新型双色可调谐白光LED用荧光粉。  相似文献   

3.
采用高温固相反应法合成了掺Dy~(3+)的Ba_2La_8(SiO_4)_6O_2荧光粉,并根据其X射线衍射谱和光致发光光谱对晶体结构和发光性能进行了系统研究。Ba_2La_8(SiO_4)_6O_2∶Dy~(3+)荧光粉具有磷灰石结构,Dy~(3+)进入晶格后并未引起晶体结构的显著变化。该荧光粉可被近紫外光或蓝光有效激发,在478 nm和571 nm附近产生较强发射峰,呈现出接近白光的黄色光。Ba_2La_8(SiO_4)_6O_2基质中,最佳Dy~(3+)掺杂浓度为1%。促成浓度猝灭效应的能量传递机制为激活剂间的电偶极-电偶极相互作用。制备荧光粉具有较好的热稳定性,150℃下样品的发光强度保留了室温下的69.6%,其热激活能为0.24 eV。本工作表明,Ba_2La_8(SiO_4)_6O_2∶Dy~(3+)荧光粉具有在近紫外或蓝光激发的白光LED照明器件中的应用潜力。  相似文献   

4.
采用高温固相法制备新型黄色荧光粉Sr_8ZnLu(PO_4)_7:Eu~(2+), Mn~(2+)。分别通过X射线衍射,扫描电镜和荧光光谱研究了材料的物相结构,形貌和发光性能。单掺Eu~(2+)样品在250~450 nm范围内出现宽峰吸收,预示着该材料可被近紫外芯片有效激发。Eu~(2+)发射光谱峰值位于520 nm,发光猝灭的机理被确定为偶极-偶极相互作用。在Eu~(2+)-Mn~(2+)共掺样品中荧光粉展现400~700 nm范围可调的宽峰发射。研究表明Sr_8ZnLu(PO_4)_7:Eu~(2+), Mn~(2+)黄色荧光粉在近紫外芯片激活的白光LED领域有潜在应用。  相似文献   

5.
Ce^3+和Mn^2+共激活的偏硅酸钙的发光性质和能量传递   总被引:5,自引:0,他引:5  
张晓  刘行仁 《硅酸盐学报》1989,17(2):140-145
研究了Ce~(3+)、Mn~(2+)共激活的偏硅酸钙的发光性质,其发射光谱主要由两部分组成:一部分是Ce~(3+)的最低5d态到基态2F_J的跃迁发射带,位于蓝紫色区域;另一部分是位于500—700nm之间的Mn~(2+)的4T_1(4G)→6A_1的宽发射带。 以Mn~(2+)发射作为监测波长时Ce~(3+)的激发谱带出现在Mn~(2+)的激发光谱中,这表明Ce~(3+)吸收能量可以有效地无辐射传递给Mn~(2+)。由于Mn~(2+)在晶格中占据不同的格位,随Mn~(2+)浓度的增加,Mn~(2+)的发射由绿变红。  相似文献   

6.
采用高温固相法合成了Eu~(3+)激活的Ba_3La_6(SiO_4)_6红色荧光粉并对其发光性质进行了研究。XRD谱显示,合成样品为纯相Ba_3La_6(SiO_4)_6晶体。样品的激发光谱由一系列宽谱组成,峰值分别位于300、364、384、395、416和466nm,其激发主峰位于395nm。在395nm激发下,荧光粉在619nm(~5D_0→~7F_2)处有很强的发射。研究了不同Eu~(3+)掺杂浓度对样品发射光谱的影响。结果显示,随Eu~(3+)掺杂量的增大,发光强度先增大后减小。Eu~(3+)掺杂摩尔分数为13%时,出现浓度淬灭,其浓度淬灭机理为电偶极-电偶极相互作用。研究了不同Bi~(3+)掺杂量对Ba_3La_6(SiO_4)_6:Eu~(3+)发射光谱及色坐标的影响。Bi~(3+)掺杂样品中存在Bi~(3+)→Eu~(3+)的能量传递。  相似文献   

7.
采用液相沉淀法合成了钆单掺杂、铕单掺杂、钆-铕共掺杂的硅酸锶发光材料。用X-射线衍射(XRD)对其结构表征。利用荧光光谱(PL)方法对合成的样品进行发光性能表征。研究结果表明:在250nm紫外光为激发波长时,Eu~(3+)单掺杂Sr_2SiO_4∶0.04Eu~(3+)的发光光谱出现Eu~(3+)的5D0→7F1(584nm)、5D0→7F2(614nm)、5D0→7F3(626nm)跃迁发光峰,钆-铕共掺杂Sr_2SiO_4∶x Gd3+,0.04Eu~(3+)发光体系中,主要表现为Eu~(3+)离子的特征发射。探讨了在硅酸锶发光体中Gd~(3+)→Eu~(3+)能量传递的机理,主要为电偶极-电偶极相互作用。当改变Eu~(3+)离子的掺杂浓度时,样品表现为Eu~(3+)离子的特征发射,此时材料发橙色光。保持Gd~(3+)、Eu~(3+)离子掺杂浓度不变,K+作为电荷补偿剂,对材料发光强度影响很小。  相似文献   

8.
采用高温固相法制备Sr_6La_4(SiO_4)_2(PO_4)_4O_2:xEu~(2+),yMn~(2+)荧光粉。通过X射线粉末衍射和结构精修研究了其物相组成和晶体结构以及该荧光粉的激发光谱、发射光谱、漫反射光谱、荧光热稳定性等发光性能。结果表明:该荧光粉具有磷灰石结构,Eu~(2+)和Mn~(2+)可占据结构中的2种阳离子格位。当Eu~(2+)的掺杂量为1%(摩尔分数)、Mn~(2+)的掺杂量为2%时,此荧光粉发光性能最好;荧光粉的发射光谱为450~550 nm的宽发射带,峰值位于478 nm,其激发光谱为220~400 nm的宽激发带,峰值位于302 nm,其色坐标值为(0.203 5,0.307 8);Mn~(2+)的掺杂有效的促进了荧光粉对近紫外光区域的吸收。当温度提升至150℃,Sr_6La_4(SiO_4)_2(PO_4)_4O_2:0.01Eu~(2+)和Sr_6La_4(SiO_4)_2(PO_4)_4O_2:(0.01Eu~(2+),0.02Mn~(2+))荧光粉的发射光谱强度分别为室温的34.46%和51.79%;Mn~(2+)的掺杂显著提升了其热稳定性。  相似文献   

9.
采用高温固相法制备了Ce~(3+)、Sm~(3+)和Ce~(3+)/Sm~(3+)掺杂的Ca_9Al(PO_4)_7荧光粉。以327 nm紫外光作为激发源时,Ca_9Al(PO_4)_7:Ce~(3+)在386 nm处出现宽发射峰,其发射对应于Ce~(3+)的4f 05d1→4f 1跃迁的蓝色光,主峰位于386 nm;在407 nm近紫外光激发下,Ca_9Al(PO_4)_7:Sm~(3+)发射红色光。为了增强Ca_9Al(PO_4)_7:Sm~(3+)的发射强度,将Ce~(3+)引入到材料中,通过Ce~(3+)到Sm~(3+)的能量传递,有效地增强了材料的发射强度,为开展白光LEDs用红色荧光粉提供了参考。  相似文献   

10.
通过高温固相法制备了系列Ba_2ZnW_(1-x)Mo_xO_6:Eu~(3+),Li~+红色荧光粉,研究了Mo~(6+)离子掺杂对样品的晶体结构以及荧光性能的影响。结果表明:部分Mo~(6+)离子取代W~(6+)离子后,样品的激发波长发生红移,最大激发波长从316 nm转移到373 nm,使得样品能有效地被近紫外光(350~420 nm)激发。Ba_2ZnW_(0.6)Mo_(0.4)O_6:Eu~(3+),Li~+在373 nm波长的激发下,所得的荧光强度最强。Eu~(3+)离子的特征跃迁仍以~5D_0→~7F_1(598 nm)跃迁为主,但~5D_0→~7F_2(615 nm)跃迁得以加强。通过其发射光谱计算所得色坐标为(0.6385,0.3611),接近标准红色色坐标。Ba_2ZnW_(0.6)Mo_(0.4)O_6:Eu~(3+)Li~+作为红色荧光粉在被近紫外激发的白光LED中具有很好的应用前景。  相似文献   

11.
采用高温固相法合成了Y_2O_3:x Bi~(3+)[x=0.05–1.00%(摩尔分数)]荧光粉,研究了Bi~(3+)掺杂浓度对荧光粉相组成、微观形貌及发光性能的影响。结果表明:Bi~(3+)掺杂量增加会引起Y_2O_3基质晶格膨胀和晶胞体积增大;荧光粉呈等轴状颗粒形貌,且随着Bi~(3+)掺杂量的增加,粒径逐渐从250 nm增加到600 nm。Y_2O_3:x Bi~(3+)荧光粉在波长为335 nm的紫外光激发下,其发射光谱由370、410和483 nm 3个宽带发射组成。370 nm紫外光发射和410 nm蓝光发射分别是由Bi~(3+)的S_6位点的~3A_u→~1A_g和~3E_u→~1A_g电子跃迁产生,483 nm蓝绿光发射是由C_2位点的~3B→~1A电子跃迁产生。当Bi~(3+)掺杂浓度为0.25%时,荧光粉发光性能最优;掺杂量大于0.25%时,由于Bi~(3+)间的偶极–偶极相互作用,产生浓度猝灭现象。所制备的Y_2O_3:0.25%Bi~(3+)荧光粉的色坐标为(0.159 2、0.218 1),显色指数Ra为69.27,表明这种蓝绿色荧光粉在白光LED领域具有良好应用前景。  相似文献   

12.
采用溶胶-疑胶法及后续硫化过程制备了Y_2O_2S:(Tb~(3+),Eu~(3+),Mg~(2+),Ti~(4+))白色长余辉发光材料,研究了煅烧温度对样品的物相、发射光谱、余辉衰减等性能的影响。结果表明:在不同煅烧温度下样品的物相均为纯Y_2O_2S相。用262 nm波长光激发样品,不同煅烧温度下制备的样品中Tb~(3+)和Eu~(3+)发射峰的位置与形状基本相同,其中位于416 nm处蓝光与544 nm处黄绿光的主发射峰归属于Tb~(3+)的~5D_3→~7F_5与~5D_4→~7F_5跃迁,位于626 nm处红光的主发射峰归属于Eu~(3+)的~5D_0→~7F_2跃迁,混合产生白光。在烧结温度为1200℃下制备的样品有最佳的色度坐标值(0.295,0.300)和余辉时间值1051s(≥1 mcd/m~2)。  相似文献   

13.
本论文采用高温固相法,制备一系列LED用白色荧光粉Y2-x(Mo O4)3:x Dy~(3+)和Y2-x-y(Mo O4)3:x Dy~(3+),y Tm~(3+)。并对此系列白色荧光粉进行测试,结果表明白光是由Tm~(3+)的蓝光发射(456 nm)以及Dy~(3+)的蓝光发射(485 nm)和黄光发射(581 nm)而组合产生的;在Y2-x(Mo O4)3:x Dy~(3+)荧光粉中,当Dy~(3+)的掺杂摩尔分数为4%时色坐标为(0.3205,0.3300)最接近白光的标准色坐标值(0.33,0.33),当Dy~(3+)为5%时强度达到最强,而4%时强度稍弱;在Y1.95-y(Mo O4)3:0.05Dy~(3+),y Tm~(3+)系列荧光粉中,确定Dy~(3+)为5%,改变Tm~(3+),当Tm~(3+)的掺杂摩尔分数为2%时其色坐标值(0.3260,0.3222)最接近标准白光,且强度也为最强;在Y1.95-y(Mo O4)3:0.05Dy~(3+),y Tm~(3+)基质中存在Tm~(3+)→Dy~(3+)能量传递现象。  相似文献   

14.
采用高温固相法制备了新型红色荧光粉NaLa_(1–x)MgTeO_6:xEu~(3+),通过X射线衍射和场发射扫描电子显微镜对粉体的结构和形貌进行了表征,测量了粉体在298~473 K温度范围的发射光谱和激发光谱,计算出能量传递的临界距离、热激活能及色品坐标值。结果表明:该粉体能被397 nm近紫外光和466 nm蓝光有效激发,并发射出Eu~(3+)的~5D_0→~7F_2跃迁产生的617 nm红光;Eu~(3+)的最佳掺杂量为40%(摩尔分数),浓度猝灭机理为电偶极–电偶极相互作用;NaLaMgTeO_6:Eu~(3+)在150℃时积分发光强度是室温的80.7%,发光热稳定性良好,发光效率高,是一种潜在高效的LED用红色荧光粉材料。  相似文献   

15.
《应用化工》2017,(11):2106-2110
用KMnO_4、ClO_2、NaClO、Na_2S_2O_8、KHSO_5及O_3等水处理中常见的氧化剂去除水中的Mn~(2+),考察了投加量、联合投加、紫外光照、pH和共存离子等对Mn~(2+)去除率的影响。结果表明,KMnO_4和O_3对溶解的Mn~(2+)有很好的去除效果,当KMnO_4与Mn~(2+)投加比为2∶3时,反应30 min后,Mn~(2+)下降至0.006 mg/L;O_3流量0.6 L/min,5 min后Mn~(2+)下降至0.056 mg/L。KMnO_4和O_3在弱碱性条件下去除效果更佳。ClO_2有一定去除效果。采用UV辐射,在UV254/ClO_2、UV254/KHSO_5、UV254/Na_2S_2O_8系统中,当氧化剂与Mn~(2+)摩尔比分别为8∶5,4∶1和4∶1时,对起始Mn~(2+)浓度在0.8~0.9 mg/L的模拟水样,Mn~(2+)可分别下降至0.006,0.006,0.001 mg/L,均优于国家标准。单用NaClO处理,在较短反应时间条件下,效率较低,若UV254/NaClO联用,则亦有较好去除效果。KHSO_5/KMnO_4与Mn~(2+)比例为5∶2时,Mn~(2+)下降至0.06 mg/L,较单个投加效果显著提高。  相似文献   

16.
采用熔融淬冷法制备了Tm~(3+)/Ho~(3+)/Yb~(3+)掺杂的Ga_2O_3-GeO_2-Li_2O玻璃。测试了样品的拉曼光谱、吸收光谱、980 nm和808 nm泵浦下的上转换发射光谱。详细调查了在980 nm和808 nm激发下不同的Yb2O3掺杂含量对Tm~(3+)/Ho~(3+)掺杂的镓锗锂玻璃的上转换发射光谱的影响,分析了稀土离子间的能量传递。研究发现:980 nm泵浦下样品观察到明显的545 nm和657 nm发射和微弱的476 nm发射峰。随着Yb~(3+)浓度的增大,由于Yb~(3+)对Tm~(3+)和Ho~(3+)的有效的能量传递增强了红光和绿光发射强度,红光的增长率是快于绿光的,Yb_2O_3的掺杂量为0.7 mol%时I657/I545强度比率达到最高。808 nm激发下可以观察到弱的476 nm的蓝光和545 nm的绿光及强烈693 nm发射。  相似文献   

17.
采用液相沉淀法合成Y_2SiO_5∶Ce~(~(3+)),Tb~(~(3+))发光材料。采用X射线粉末衍射仪(XRD)、扫描电镜(SEM)、荧光分光光度计以及国际照明委员会(CIE)色度坐标图对其相的组成、光谱学和发光特性进行了研究。Y2Si O5∶Tb~(3+)激发光谱中存在较强的基质激发峰,在发射光谱中,发现Tb~(3+)的5D4→7FJ(J=6,5,4,3)跃迁,最大发射中心位于545nm(5D4→7F5跃迁)。在Y_2SiO_5∶Ce~(~(3+)),Tb~(~(3+))双掺体系中,Tb~(3+)的发光强度随Ce~(3+)的浓度增加而增强,存在Ce~(3+)→Tb~(3+)能量传递,尤其是Tb~(3+)的5D4→7F5跃迁发射显著增强,有望成为一种有发展前途的绿色荧光材料。  相似文献   

18.
采用高温固相反应法制备了系列浓度Sm~(3+)离子掺杂的Sr_2P_2O_7材料,利用X射线衍射和荧光光谱研究了材料的物相结构和发光性能。Sm~(3+)离子可以吸收365 nm的近紫外光,产生橙红光发射,最强发光峰位于597 nm。掺杂浓度对发光强度有显著影响,当Sm~(3+)离子的掺杂量为0.05时,发光强度最大,由此计算能量传递的临界距离为17.02?。  相似文献   

19.
以Na_2CO_3、V_2O_5、H_3BO_3和Y_2O_3为原料,采用高温固相反应法制备了一系列新型荧光材料Na_(3-X)VO_2B_6O_(11)∶x Y~(3+)(x=0.03,0.04,0.05)。利用XRD、SEM和970CRT荧光分光光度计对所制备荧光粉的结构、形貌及发光性能进行了研究,并研究了Y~(3+)离子掺杂量对Na_(3-X)VO_2B_6O_(11)∶x Y~(3+)荧光粉荧光强度的影响。研究结果表明:以260 nm为激发波长,测得该荧光粉的发射光谱中发射峰主要位于594、620、653和700 nm处,并且该荧光粉在暗箱式紫外光谱仪照射下呈现出红色;Y~(3+)离子掺杂浓度的研究结果表明,Na_(3-X)VO_2B_6O_(11)∶x Y~(3+)荧光粉中Y~(3+)离子的最好掺杂浓度为x=0.4。  相似文献   

20.
采用低温燃烧法分别制备了Y_2O_3:Eu~(3+)和钐(Sm~(3+))、铈(Ce~(3+))掺杂的Y_2O_3:Eu~(3+)红色荧光粉,并研究了反应温度及掺杂量对荧光粉性能的影响。使用激光粒度仪、X射线粉末衍射仪和荧光光谱仪,对样品的物相、粒度及发光特性进行了表征和分析。结果表明,Y_2O_3:Eu~(3+)的最佳反应温度为200℃,Sm~(3+)和Ce~(3+)掺杂Y_2O_3:Eu~(3+)的粒径分别分布在396~615 nm和531~955 nm,Sm~(3+)和Ce~(3+)的掺杂均能显著增强Y_2O_3:Eu~(3+)红色荧光粉的发光性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号