首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
考察了加工温度和封端剂马来酸酐(MAH)含量对聚碳酸亚丙酯(PPC)黏均相对分子质量的影响。结果表明,PPC对温度非常敏感,加工温度在120 ℃以上时,其黏均相对分子质量就有很大的下降,温度越高,下降得越多;少量的MAH对PPC的封端作用就很明显,加工温度相同时,MAH的添加量越多,对PPC的封端作用越强,但MAH的添加量不宜超过1 %。  相似文献   

2.
制备了马来酸酐接枝细菌纤维素(BC-g-MAH),然后采用溶液浇铸法将BC-g-MAH与聚乳酸(PLA)制备成复合材料,通过红外光谱、差示扫描量热分析、拉伸实验和热失重分析等测试手段,研究了由PLA与不同含量BC-g-MAH制备成的复合材料的结构和性能。结果表明,MAH对BC进行了成功的接枝,制得的BC-g-MAH与 PLA具有较好的界面相容性;随着BC-g-MAH含量的增加,改性后的复合材料的结晶度、拉伸强度和拉伸模量较纯PLA有较大提高;BC-g-MAH含量为 20 %(质量分数,下同)时,复合材料的结晶度、拉伸强度和拉伸模量较纯PLA分别提高了17.1 %、69.4 %和428.4 %,复合材料热稳定性能也有了显著增强。  相似文献   

3.
This paper analyzes the thermal and thermo‐oxidative degradation behavior, phase separation, melting, and crystallization of blends consisting of isotactic poly(propylene) (IPP) and poly(propylene) grafted with maleic anhydride (PP‐g‐MA). It has been established that, depending on the blend composition and crystallization/preparation procedure, the blends of IPP and PP‐g‐MA can either co‐crystallize or evidence phase separation. This conclusion has been attained by comparing the DSC results of crystallization under dynamic and isothermal conditions with X‐ray diffraction results. On the basis of the obtained results, the optimum mixing ratios have been established as 95–85 wt.‐% IPP/5–15 wt.‐% PP‐g‐MA. Thermo‐oxidative behavior has been studied by thermogravimetry and differential thermal analysis.

  相似文献   


4.
在聚丁二酸丁二酯(PBS)分子主链中添加带有不饱和键的马来酸酐(MAH)和富马酸(FA)单体,得到了含有不饱和键的,具有顺、反结构的PBS基共聚物。通过广角X射线衍射、热重分析、差示扫描量热分析和拉力测试等分析手段,研究了不同结构共聚物的性能。结果表明,随着MAH和FA含量的增加,两种改性后的PBS基共聚物的晶粒尺寸减小;玻璃化转变温度都有所降低;共聚物的热稳定性都略有降低,但高于300℃,仍具有良好的热稳定性;共聚物的拉伸强度差异较大,但断裂伸长率明显提高。在PBS主链中形成顺、反结构的两种单体的添加对PBS基共聚物性能的影响没有太大差别。  相似文献   

5.
PP‐g‐MA‐layered EGO composites were prepared directly by solution blending. Two types of PP‐g‐MA/EGO composites were prepared using different mixing methods: distributive and dispersive. In this study, the effects of the mixing method of EGO on the crystalline structure and thermo‐mechanical properties of PP‐g‐MA/EGO composites are reported. WAXD exhibited a shift in 2θ of the monoclinic (α) phase of PP‐g‐MA and (002) EGO peaks for PP‐g‐MA/EGO layered composites, which indicated a modification of the crystalline structure of PP‐g‐MA in the layered composites. DSC exhibited a single characteristic melting peak of monoclinic (α) crystalline phase PP‐g‐MA. The incorporation of EGO increased Tc indicating that the EGO acted as a nucleating agent for PP‐g‐MA. The crystallinity of the PP‐g‐MA/EGO composites was found to be dependent on the mixing method. Thermogravimetry demonstrated that PP‐g‐MA in the presence of EGO has higher degradation temperature, suggesting that the graphite particles acted as a thermal barrier material for PP‐g‐MA. DMA indicated that incorporation of EGO into PP‐g‐MA increased the storage modulus, due to the hydrogen bonding between EGO and MA of PP‐g‐MA.

  相似文献   


6.
利用红外光谱测定了接枝样品,用其中马来酸酐(MAH)的特征峰与苯乙烯/乙烯/丁烯/苯乙烯嵌段共聚物(SEBS)的特征峰之比值来表达接枝率,探索了接枝时MAH和助剂的量对接枝率的影响,同时探讨了不同接枝率的相容剂及不同比值的聚苯醚(PPO)/尼龙6(PA6)对PPO/PA6合金的增容作用及其对合金的综合性能影响.结果表明:(1)加入合适的助剂有利于SEBS体系的接枝,而当MAH的加入量为3%时得到的接枝率最高;(2)接枝率提高,合金的综合性能稍有改善;(3)PPO/PA6 = 70/30时性能指标达到最优.而接枝的SEBS加入量10%时PPO/PA6合金的综合性能最优.  相似文献   

7.
采用熔融插层法制备了有机化累托石/聚碳酸亚丙酯纳米复合材料,通过X射线衍射、原子力显微镜、热重分析法测试了复合材料的结构与热性能。结果表明:聚碳酸亚丙酯能插层于累托石片层中,累托石/聚碳酸亚丙酯纳米复合材料的耐热性有了很大程度的提高。  相似文献   

8.
Summary: N‐Isopropylacrylamide (NIPAAm) was graft‐polymerized from its acetone solution onto poly(propylene) (PP) films, after electron‐beam irradiation in the presence of air oxygen. The effects of pre‐irradiation dose as well as monomer concentration, reaction temperature and reaction time on the grafting efficiency were investigated. Typical conditions for achieving maximum grafting yield were observed for 1 M monomer concentration, after PP pre‐irradiation with a 300 kGy dose and a reaction temperature of 50 °C. The location of the graft polymerization was examined by different methods including measurements of dimensional variations, calorimetry, SEM and AFM. The temperature‐responsive behavior of grafted copolymer was studied by swelling and contact angle measurements at different temperatures.

Temperature dependence of the swelling ratio in water as a function of temperature.  相似文献   


9.
(EPDM/LLDPE)-g-MAH对回收光盘PC的增韧研究   总被引:1,自引:0,他引:1  
采用自制的马来酸酐接枝三元乙丙橡胶/线形低密度聚乙烯共混物((EPDM/LLDPE)-g-MAH),通过熔融共混挤出对回收光盘聚碳酸酯(PC)进行增韧。结果表明,(EPDM/LLDPE)-g-MAH的加入有效地提高了回收光盘PC的拉伸强度和缺口冲击强度。当其加入量为5%时,共混物性能最优,拉伸强度和缺口冲击强度分别提高到原来的188%和276%。并用扫描电子显微镜对缺口冲击断面进行分析。  相似文献   

10.
Summary: Poly[propylene‐co‐(1‐hexene)], one example of a “tailor‐made poly(propylene)”, was synthesized using an iso‐specific metallocene catalyst in order to study the influence of copolymer composition on the pore size of isotactic poly(propylene) (iPP) membranes prepared by the TIPS process. The structure of the copolymers and their properties in solution were analyzed and discussed in relation to the polymer‐diluent phase diagram, the droplet growth kinetics during the TIPS process, the viscosity of the system and the final pore size of the membranes. The crystallization curve in the phase diagram was found to shift significantly as comonomer content increased and thus the droplet growth period was drastically increased. The resulting increase of the characteristic pore size in the membranes demonstrated that it is possible to use tailor‐made poly(propylene)s to control the pore size in porous membranes prepared via the TIPS process (under otherwise constant conditions).

Porous size is controlled by the polymer and the TIPS process.  相似文献   


11.
Maleic anhydride was grafted onto poly(propylene) (PP)‐type thermoplastic elastomer PER by reactive processing with a screw extruder and a maleated PER (MPER) was prepared. With the intent of ionic crosslinking, metal compounds such as aluminum stearate (AlSt), magnesium stearate (MgSt), calcium stearate (CaSt), zinc stearate (ZnSt), potassium stearate (KSt), sodium stearate (NaSt), magnesium hydroxide (MH), zinc oxide (ZnO), and zinc sulfide (ZnS) were added to the MPER and melt‐mixed with the screw extruder, and crosslinked compounds were obtained. The degree of crosslinking estimated from the gel fraction was in the order AlSt, MgSt, CaSt, ZnSt > NaSt, KSt > MH > ZnO, ZnS > MPER. The rheological properties, such as capillary flow properties and dynamic viscoelasticities, of the compounds were measured and their melt processabilities were evaluated. The viscosity increased with increasing the content of the metal compounds and the increase was higher at the lower shear rate. The increasing effect of the viscosity at low shear rates was AlSt > MgSt > ZnSt > NaSt > KSt > MH > ZnO > ZnS > MPER. Namely, the viscosity increasing effect of the metal salt of stearic acid is the higher for the larger ionic charge and the viscosity increasing effects of other compounds are lower than those of the metal salts of stearic acid. Accordingly, by changing the kind and content of the metal compounds, the viscosity can be freely controlled. Considering also other rheological characteristics, these ionically crosslinked compounds are assumed to show ideal flow processabilities except for the extrudate appearance. To improve the appearance, it is necessary to dilute the compound with unmodified PER, PP, or fillers. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2887–2897, 2002  相似文献   

12.
Additive manufacturing (AM) processes can provide great input for solving recently encountered challenges of the global market such as mass customization, highly dynamic environments, and the decrease of time needed from a draft to final products. This study aims at contributing to the issue of material limitations typically present in AM by researching possibilities of directly using technically relevant and commercially available polymer granules in melt extrusion processes. In order to extend the knowledge on the processing of semicrystalline polymers in melt extrusion based processes, different temperature induced influences on mechanical and morphological properties are investigated for poly(propylene). Mechanical tests are conducted to evaluate the effects and interdependencies of substrate, extrusion, and cooling temperature. Finally, based on the identified mechanical and rheological behavior of the material, a process window for the used materials is suggested.

  相似文献   


13.
Summary: Poly(propylene) (PP)‐clay nanocomposites were prepared from unmodified montmorillonite clays (NaMMT), with poly(ethylene oxide)‐based nonionic surfactants as dispersants/intercalants/exfoliants. The primary objective of this research was to find dispersants that (a) allow PP nanocomposites to be formed by direct melt mixing; (b) are effective with unmodified clays and (c) comprise of only a minor component with respect to both the clay and the overall composition. Linear, branched, gemini and sugar‐based surfactants and structures containing poly(dimethyl siloxane) and poly(methyl methacrylate) blocks were examined. These additives were found to be effective in breaking down the clay agglomerates to tactoids, giving some expansion of the clay structure and partial exfoliation and providing substantially improved clay dispersion. The properties of the derived nanocomposites depend on the level of additive and its structure. Tensile and impact properties show significant improvement over the precursor PP. Also notable are the significantly better thermal and thermo‐oxidative stabilities, as compared to both PP and “clay alone” composites. For optimal properties, it is both necessary and desirable that the surfactant should only be a minor constituent (20–50%) of the composition, with respect to the clay. A preferred surfactant is linear PE‐block‐PEO, with a short PEO block and an alkyl chain with approximately 30 carbon atoms (C30).

  相似文献   


14.
The comparison of the mechanical properties between poly(propylene)/ethylene‐propylene‐diene monomer elastomer (PP/EPDM) and poly(propylene)/maleic anhydride‐g‐ethylene‐propylene‐diene monomer [PP/MEPDM (MAH‐g‐EPDM)] showed that the latter blend has noticeably higher Izod impact strength but lower Young's modulus than the former one. Phase morphology of the two blends was examined by dynamic mechanical thermal analysis, indicating that the miscibility of PP/MEPDM was inferior to PP/EPDM. The poor miscibility of PP/MEPDM degrades the nucleation effectiveness of the elastomer on PP. The observations of the impact fracture mode of the two blends and the dispersion state of the elastomers, determined by scanning electron microscopy, showed that PP/EPDM fractured in a brittle mode, whereas PP/MEPDM in a ductile one, and that a finer dispersion of MEPDM was found in the blend PP/MEPDM. These observations indicate that the difference in the dispersion state of elastomer between PP/EPDM and PP/MEPDM results in different fracture modes, and thereby affects the toughness of the two blends. The finer dispersion of MEPDM in the blend of PP/MEPDM was attributed to the part cross‐linking of MEPDM resulting from the grafting reaction of EPDM with maleic anhydride (MAH) in the presence of dicumyl peroxide (DCP). © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 2486–2491, 2002  相似文献   

15.
16.
Summary: In this paper, the graft of poly(propylene) fiber with acrylic acid is investigated. The effects of grafting temperature, monomer concentration, and grafting time on the grafting degree of acrylic acid onto poly(propylene) fiber are discussed. In contrast to the conventional method of determining the grafting degree gravimetrically, the acid‐base titration method used in this paper was more efficient, even at low grafting degree. High‐performance liquid chromatography (HPLC) was used to estimate the averaged length of the grafted poly(acrylic acid) chains on each grafted site of poly(propylene) backbone. And also a mechanism for the grafting polymerization is proposed.

Possible microstructures of two PP‐g‐AA samples at the same grafting degree.  相似文献   


17.
18.
Summary: Composite materials were prepared by compounding and hot‐pressing PP or MAPP and lignocellulosic fibers extracted from the rachis of Musa acuminate Colla var. Dwarf Cavendish banana tree. The fibers were used as raw filler or after a chemical treatment expected to remove most of the extractible compounds. The resulting materials were characterized using SEM, DSC, DMA, tensile tests and water sorption experiments. All results show that the main aspect involved in the interfacial adhesion between the polar filler and the non‐polar matrix is the extraction of lignin and fatty substances. This results in higher values of the degree of crystallinity and crystallization temperature of the matrix, higher mechanical properties and lower water sensitivity.

Scanning electron micrograph showing the cross section of the lignocellulosic filler obtained from rachis of banana tree: (a) raw, and (b) extracted fibers.  相似文献   


19.
Polyhydroxyalkanoate (PHA) and poly(propylene carbonate) (PPC) are blended in order to investigate their mutual contributions in terms of functional properties. A wide range of blend composition is processed through extrusion from dry blends. Droplet‐matrix morphology is observed for all samples. Thermal investigations reveal the PPC effect on the PHA crystallization process with a decrease and broadening of the crystallization temperature window and on the depression of its glass transition temperature. This investigation also confirms the as yet un‐reported non‐miscibility of this kind of blend. However, a slight phase interaction is expected since thermal behavior of PHA is impacted. The fragile behavior of PHA is balanced by the high ductility of PPC. The weak strain at break of PHA can thus be increased by up to 200% although a significant amount of PPC is needed to start modifying this property. Stress at break and modulus are linearly decreased from pure PHA to pure PPC values. PPC also acts as an impact modifier for PHA. In terms of barrier properties, PHA brings a large contribution even at low content to the initially high oxygen and water vapor permeability of PPC.

  相似文献   


20.
The nonisothermal crystallization kinetics of poly(propylene) (PP), PP–organic‐montmorillonite (Org‐MMT) composite, and PP–PP‐grafted maleic anhydride (PP‐g‐MAH)–Org‐MMT nanocomposites were investigated by differential scanning calorimetry (DSC) at various cooling rates. Avrami analysis modified by Jeziorny and a method developed by Mo well‐described the nonisothermal crystallization process of these samples. The difference in the exponent n between PP and composite (either PP–Org‐MMT or PP–PP‐g‐MAH–Org‐MMT) indicated that nonisothermal kinetic crystallization corresponded to tridimensional growth with heterogeneous nucleation. The values of half‐time, Zc; and F(T) showed that the crystallization rate increased with the increasing of cooling rates for PP and composites, but the crystallization rate of composites was faster than that of PP at a given cooling rate. The method developed by Ozawa can also be applied to describe the nonisothermal crystallization process of PP, but did not describe that of composites. Moreover, the method proposed by Kissinger was used to evaluate the activation energy of the mentioned samples. The results showed that the activation energy of PP–Org‐MMT was much greater than that of PP, but the activation energy of PP–PP‐g‐MAH–Org‐MMT was close to that of pure PP. Overall, the results indicate that the addition of Org‐MMT and PP‐g‐MAH may accelerate the overall nonisothermal crystallization process of PP. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 3093–3099, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号