首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this article X‐band rectangular waveguides partially filled with the double‐side single ring resonator (DSRR) array are investigated for miniaturization, stop‐band, and multi‐band filters applications. Several rectangular waveguides loaded with the DSRR array in 2–10 GHz frequency band have been studied and optimized. We observe both the transversal negative permeability presented above the cutoff frequency and the backward‐wave located below the cutoff frequency with the DSRR array in X‐band waveguide. Both simulation and measurement results of DSRR array are with good agreement. The DSRR array provides better performance of the transversal negative permeability and the backward‐wave than the split‐ring resonator array. The physical explanation of backward‐wave is presented. The power loss distributions are clearly presented for the negative permeability attenuation and the backward‐wave propagation. © 2016 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:240–246, 2016.  相似文献   

2.
A novel super compact filter based on half‐mode substrate‐integrated waveguide (HMSIW) technology loaded by the modified complementary split‐ring resonator (MCSRR) is proposed. The working principle of the proposed filter is based on the evanescent‐mode propagation technique. According to this technique, by loading the complementary split‐ring resonator (CSRR) on the metal surface of the substrate‐integrated waveguide (SIW) structure, an additional passband below the SIW cutoff frequency can be obtained. In order to miniaturize the physical size of the conventional CSRR, a new method is introduced. In the proposed MCSRR unit‐cell, the meander slots are carved inside all of the interior space of the ring. Accordingly, the length of the slot is increased which leads to an increase in the inductor and capacitor of the proposed structure without occupying the extra space. Therefore, the electrical size of the proposed MCSRR unit‐cell is reduced. Consequently, the resonance frequency of the proposed MCSRR unit‐cell is decreased compared to the conventional CSRR with the same sizes. Namely, the lower resonance frequencies can be achieved by using this technique without increasing the size of the unit‐cell. In order to confirm the miniaturization technique, two HMSIW filters loaded by the proposed MCSRR unit‐cell are designed, fabricated, and experimental verifications are provided. The results show that a miniaturization about 67% is achieved.  相似文献   

3.
This paper presents electrical performance and propagation characteristics of self‐shielded uniplanar guided‐wave structures including circular, elliptic, diamond, and trapezoidal enclosures. Enhanced spectral domain approach is extended to characterize guided‐wave property of these self‐shielded lines. Particular attention is focused on fundamental mode propagation constant and characteristic impedance of coupled uniplanar line having a practical shield profile. Influence of various parameters of the structure on cutoff frequency of the slotline mode is investigated. Interesting features of the self‐shielded uniplanar structures are discussed for design consideration. Results are verified with some data available and presented in support of the technical discussion. ©1999 John Wiley & Sons, Inc. Int J RF and Microwave CAE 9: 22–31, 1999.  相似文献   

4.
The split‐step‐Fourier‐based three‐dimensional wave propagation prediction and finite‐difference time‐domain‐based simulators are developed to show network scattering parameters of rectangular waveguide filters with horizontal and/or vertical windows as capacitive and/or inductive irises, respectively. The three‐dimensional‐split‐step parabolic equation simulator is applied to rectangular waveguide filters, and the results are compared with finite‐difference time‐domain model through tests inside a rectangular waveguide. © 2016 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:660–667, 2016.  相似文献   

5.
The slow wave effect can be obtained by a capacitively loaded structure with a symmetrical interdigital line connected on both sides of the coplanar waveguide (CPW) central line. The ferroelectric thin film with high dielectric constant can reduce the size of circuit and make it possible to realize tunable devices such as filter by applying voltage on it. Actually, this kind of slow wave structure is a periodic guided‐wave structure and can be analyzed by using classic finite difference frequency domain (FDFD) method for periodic guided‐wave structures. However, the very compact slow‐wave structures will usually result in simulation errors when the classic FDFD method is adopted, which will lead to a nonsymmetrical generalized eigenvalue problem. In this article, the shift‐and‐invert (SI) Arnoldi method is used to directly resolve this nonsymmetrical generalized eigenvalue problem. As a result, the accuracy of FDFD algorithm is improved. Especially for the large scale eigenvalue problem, SI method can also have a very fast speed of calculation. By means of its complex propagation constant obtained from simulation, one can extract circuit parameters of the interdigital capacitor. Consequently, one can analyze and design relevant resonators and filters in a quick and accurate manner, which are constructed with such interdigital slow wave structures. © 2008 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2008.  相似文献   

6.
A compact substrate integrated waveguide (SIW) with open complementary split‐ring resonators (OCSRRs) loaded on the waveguide surface is proposed. The OCSRRs can be interpreted in terms of electric dipoles and they are good candidates to behave as electric scatterers. By loading OCSRRs on the waveguide surface, a forward‐wave pass‐band propagating below the waveguide cutoff frequency is generated. The resonance frequency of the OCSRRs is approximately half of the resonance frequency of the complementary split ring resonator (CSRR). Therefore, the electrical size of this particle is larger than the CSRRs and the OCSRRs are more appropriate for the SIW miniaturization. A bandpass response with a sharp rejection frequency band is obtained by properly manipulating the structure of the elements. By changing the orientation of the OCSRRs, two types of unit cell are proposed. Moreover, by resizing the OCSRRs, resonance frequency can be easily moved and the bandwidth can be tuned by the coupling between two OCSRRs. Compared with some other reported bandpass filters (BPFs) with SIW technique, the presented BPF has great improvements on size reduction and selectivity. To verify the methodology, two filters with center frequency of 5.5 GHz are designed and measured. The measured results are in good agreement with the simulated ones. © 2016 Wiley Periodicals, Inc. Int J RF and Microwave CAE 26:674–682, 2016.  相似文献   

7.
Two types of miniaturized rectangular waveguide filters are presented. Miniaturization is achieved using the slow‐wave effect of electromagnetic bandgap (EBG) surfaces and the left‐handed properties of split ring resonators (SRRs). The proposed EBG waveguide bandpass filter performs passband in the frequency range, which corresponds to the waveguide with the lower recommended operating band consequently enabling significant miniaturization of the structure. The SRR‐loaded bandstop filter makes use of the effect imposed by left‐handed medium (LHM), which is created by a combination of SRRs and wireline on the dielectric slab. Both filters are designed, simulated, and tested. Experimental results of the SRR‐loaded bandstop filter are presented to demonstrate feasibility of the proposed structures. © 2007 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2007.  相似文献   

8.
A two‐stage mm‐wave variable‐gain amplifier is designed and implemented in a 65‐nm CMOS technology. A fully symmetric layout has been utilized to suppress the odd‐mode of propagation and increase the quality factor in co‐planar waveguide transmission lines. Moreover, a new design technique is proposed for implementing decoupling capacitors for mm‐wave frequencies. Body‐biasing technique is utilized to change the amplifier gain without significant change in the overall power consumption of the circuit. The measurement results show that the amplifier achieves a peak gain of 10 dB with a gain variation range of 25 dB while consuming 12 mW from a 1.2‐V supply. © 2013 Wiley Periodicals, Inc. Int J RF and Microwave CAE 24:470–477, 2014.  相似文献   

9.
A double‐channel lossy‐dielectric waveguide, having its propagation characteristics controlled by the action of light, is analyzed here. The light is incident on a semiconductor material that constitutes the inner channel of the waveguide structure, generating a plasma. The analysis of the problem is done by using the finite difference in the frequency domain method which was found to be efficient for this analysis. The results presented here were confirmed with those obtained using the finite element method. © 2000 John Wiley & Sons, Inc. Int J RF and Microwave CAE 10: 127–131, 2000.  相似文献   

10.
In this study, a wideband dual‐element leaky‐wave antenna (DE‐LWA) is proposed to achieve constant gain and wideband broadside radiation by using multilayered composite right/left‐handed substrate integrated waveguide. The proposed DE‐LWA consists of two leaky‐wave radiator elements which are with slanted and vertical interdigital fingers slot arrays. To verify the simulated results, the proposed DE‐LWA is fabricated and measured. The measured results are in good agreement with the simulated ones, indicating that the fabricated antenna obtains broadside gain of 12.5 dB with variation of 1.0 dB over the frequency range of 8.725‐9.25 GHz (5.84%). Moreover, the proposed DE‐LWA also can provides a beam scanning property from backward ?80° to forward +80° over the frequency range from 7.4 to 12.7 GHz with a constant gain of more than 10 dB. Besides, the electromagnetic performances of this work are better than those of the recently reported similar work in the references.  相似文献   

11.
In this article, an approach is presented to compute the scattering parameters of the ferrite‐loaded waveguide discontinuity using the finite‐element method (FEM) and perfectly matched layers (PMLs). The propagation constants of a uniform ferrite‐loaded waveguide are first calculated to validate the proposed approach. Then a 2D ferrite‐loaded discontinuity problem is computed to further confirm the accuracy of the approach. Finally, several 3D discontinuity results are given to show the efficiency and generality of the approach. © 2003 Wiley Periodicals, Inc. Int J RF and Microwave CAE 13, 341–347, 2003.  相似文献   

12.
A hybrid method that combines moment method and mode matching technique is presented to study H‐Plane waveguide discontinuity loaded with metallic posts at the junction of two waveguides. By expanding Eigen modes in waveguides, applying continuity of tangential fields at the discontinuity and finally nulling the tangential electric field on the post surface, a system of algebraic equations is solved to obtain current distribution on the posts and consequently scattering parameters of the structure. Then, as an application, an in‐line dual‐mode rectangular waveguide bandpass filter is analyzed using the proposed method along with generalized scattering matrix method. The numerical results are in good agreement with existing full wave finite element method in high frequency structure simulator (HFSS) results and measurements. © 2011 Wiley Periodicals, Inc. Int J RF and Microwave CAE , 2011.  相似文献   

13.
A dipole‐type millimeter‐wave (mm‐wave) antenna with directional radiation characteristics is presented. A radiating patch structure composed of a dipole‐type radiation patch and a rectangular‐shaped parasitic patch are initially investigated to achieve a wider bandwidth. To further improve the operating bandwidth and to realize a directional radiation characteristic, this radiating patch structure is top‐loaded above a conducting cavity‐backed ground structure, which has a low profile (thickness of 3 mm). The measured results show that the proposed mm‐wave antenna can achieve a wide 10‐dB bandwidth of 51.3% (29.6‐50.0 GHz) and stable gain across the desired frequency range. Furthermore, good directional characteristics over the entire mm‐wave frequency band with a compact antenna size of 0.64λ40GHz × 0.91λ40GHz × 0.43λ40GHz are also realized. Hence, it is suitable for many small size wireless mm‐wave systems.  相似文献   

14.
Analytical solution of plane wave scattering by a circular PEMC (Perfect Electromagnetic Conductor) cylinder coated with anisotropic media was presented in this article. When referred to principal axes (ρ, ?,z) in the anisotropic region, both permittivity and permeability tensors were biaxial and diagonal; so, the radial Eigen‐functions were complex ordered Bessel's functions. The monostatic and bistatic scattering cross‐sections of a PEMC cylinder coated with both of anisotropic DPS (double‐positive) medium with positive values of relative permittivity and elements of permeability tensors and anisotropic DNG (double‐negative) metamaterial with negative values of relative permittivity and permeability elements of tensors were calculated. The validity of the presented relations was achieved by comparing the results of specific cases of isotropic coated cylinder and anisotropic coated perfect electric conductor cylinder with those of previously published methods. © 2012 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2013.  相似文献   

15.
In this article, a novel electrically small eighth‐mode substrate integrated waveguide (EMSIW) based leaky‐wave antenna (LWA) in planar environment is presented. The proposed antenna uses 1/8th mode SIW resonator which helps to improve compactness of the design while maintaining high gain and increased scanning angle. The proposed SIW cavity is excited by a 50 Ω microstrip line feeding to resonate at dominant TE110 mode in X‐band. The dimensions of the resonators are adjusted to keep resonant mode at same frequency. The fabricated prototype is approximately 5λ0 long. Measured results show that the proposed leaky‐wave antenna is able to operate within frequency range of 8‐10 GHz with beam scanning range of 51° and maximum gain of 13.31 dBi.  相似文献   

16.
Design and realization of spur line loaded frequency‐notched planar ultra‐wideband (UWB) antenna is proposed in this article. Accommodating the spur line (lines) of quarter wavelength long on the feeding microstrip line of UWB antenna, contributes to the notch‐filtering action in the feeding section itself which in turn can provides single/double/triple notch (notches) within the UWB spectrum of the antenna. The proposed technique is very simple and radiator independent as the filtering is performed in the feed region and hence the UWB radiator can be independently designed. The spur line based filtering sections are first separately designed and verified by S‐parameter measurements of the fabricated prototypes. Single, double, and triple spur line loaded microstrip sections are separately used as the feed section of a circular monopole antenna (MPA) to invoke single‐, dual‐, and triple‐notched UWB response of the MPA. All the designed prototypes are fabricated and characterized in terms of impedance and radiation parameter measurements, yielding very close correspondence with that of results obtained from full wave simulation.  相似文献   

17.
根据多波模传输理论推导出多波模综合作用下因巷道壁粗糙度引起的电磁波衰减计算公式,并采用多波模模型仿真分析巷道壁粗糙度对电磁波衰减特性的影响。Matlab仿真结果表明,巷道壁粗糙度对电磁波衰减特性的影响随频率升高而增大,由于波导效应和巷道壁粗糙度的共同作用,煤矿井巷电波传播存在一个0.4~2GHz的低衰减频段。  相似文献   

18.
This article presents a new solution for stopband performance improvement of rectangular waveguide bandpass filters using S‐shaped resonator loaded waveguide configurations at microwave and millimeter‐wave frequencies. The proposed filter structure is compact in size when comparing with the standard E‐plane counterpart. Compactness is achieved by taking advantage of the properties of slow wave effect in half wavelength resonators. Periodicity is readily imposed upon cascading the S‐shaped resonators within the rectangular waveguide. The structure is simple and compatible with E‐plane technology. This type of bandpass filters can be easily realized with a single metallo‐dielectric insert within a standard rectangular waveguide. Simulation and experimental results are presented to validate the argument along with some design guidelines. © 2009 Wiley Periodicals, Inc. Int J RF and Microwave CAE 2009.  相似文献   

19.
Microwave energy is widely used for heating, however, it usually causes nonuniformity temperatures. In this study, systematical mathematic derivations as well as the theory of electromagnetic wave propagation in a multimode cavity is used to demonstrate the mathematical physics basis of frequency‐selected microwave heating, moreover, the characteristics including the dependence of frequency selecting criteria and the shape of heated samples on heating performance are further analyzed. Finally, numerical computation based on finite element method is used to verify the correctness of the conclusions. This study can help us make better use of microwave energy.  相似文献   

20.
A miniaturized substrate integrated waveguide (SIW) bandpass filter using fractal open complementary split‐ring resonators (FOCSRRs) unit‐cell is proposed. The proposed structure is realized by etching the proposed FOCSRR unit‐cells on the top metal surface of the SIW structure. The working principle of the proposed filter is based on the evanescent‐mode propagation. The proposed FOCSRRs behave as an electric dipoles in condition of the appropriate stimulation, which are able to generate a forward‐wave passband region below the cutoff frequency of the waveguide structure. Since, the electrical size of the proposed FOCSRRs unit‐cell is larger than the conventional OCSRRs unit‐cell; therefore, the FOCSRR unit‐cell is a good candidate to miniaturize the SIW structure. The proposed filter represents high selectivity and compact size because of the utilization of the sub‐wavelength resonators. The introduced filter is simulated by a 3D electromagnetic simulator. In order to validate the ability of the proposed topology in size reduction, 1‐ and 2‐stage of the proposed filters have been fabricated based on the standard printed circuit board process. The measured S‐parameters of the fabricated filters are in a good agreement with the simulated ones. The proposed SIW filters have many advantages in term of compact size, low insertion loss, high return loss, easy fabrication and integration with other circuits. It is the first time that the FOCSRR unit‐cells were combined with the SIW structure for miniaturization of this structure. Furthermore, a wide upper‐stopband with the attenuation >20 dB in the range of 3–8 GHz is achieved. The results show that, a miniaturization factor about 75.5% has been obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号