首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
采用喷雾干燥法制备尖晶石Li_4Ti_5O_(12)。将所得Li_4Ti_5O_(12)与纳米Sb_2O_3混合后高能球磨得到Sb_2O_3掺杂的Li_4Ti_5O_(12)。经X射线衍射(XRD)测试,结果表明Sb_2O_3未进入Li_4Ti_5O_(12)尖晶石结构。经扫描电子显微镜(SEM)测试,结果表明高能球磨法使颗粒更小、更分散。采用充放电测试、循环伏安法和交流阻抗测试研究了Sb_2O_3对Li_4Ti_5O_(12)电化学性能的影响。研究结果表明,Sb_2O_3的掺杂能提高Li_4Ti_5O_(12)的电化学性能。在15 C的高电流密度下,循环10次后其放电比容量仍保持在113.7 mAh/g,远高于未掺杂的Li_4Ti_5O_(12)电极放电比容量(62.7 mAh/g)。交流阻抗测试结果表明,Sb_2O_3/Li_4Ti_5O_(12)电极的电化学性能改善的主要原因是其R_(CT)值较小。  相似文献   

2.
研制以Li Ni_(1/3)Co_(1/3)Mn_(1/3)O_2、钛酸锂(Li_4Ti_5O_(12))分别为正、负极活性物质,25μm厚的聚乙烯为隔膜的方形(245 mm×160 mm×6 mm)12 Ah铝塑膜软包装锂离子电池。筛选电极材料、电解液配方,并通过优化工艺制作的电池在1.5~2.7 V充放电,在常温(25℃)下以4.00 C循环6 000次的容量保持率大于98%,且不胀气;以0.50 C放电,在高温(55℃)下的容量为常温时的108.2%;最高脉冲放电比功率为2 232 W/kg。5只100%SOC电池串联进行针刺测试,不起火、不爆炸。  相似文献   

3.
黎明旭  刘艺  钱龙  王海涛 《电池》2016,(6):328-331
采用4种正极活性物质,设计32650型4.0 Ah钛酸锂(Li_4Ti_5O_(12))负极锂离子电池,评估充放电倍率性能、放电温升、低温放电性能、循环性能和安全性能。尖晶石镍锰酸锂(Li Ni0.5Mn1.5O4)正极电池的电压平台高(3.15 V),-20℃下的1 C放电(3.3~2.0 V)容量是常温时的83.16%,比能量为74.57 Wh/kg;磷酸铁锂(LiFePO_4)正极电池的电压平稳(1.70 V),适用于对电压要求严格的领域。三元材料正极电池中,镍钴锰酸锂(LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2)正极电池的各项性能较优,3 C循环3 486次的容量保持率为102.58%,可用于快充领域;镍钴铝酸锂(LiNi_(0.8)Co_(0.15)Al_(0.05)O_2)正极电池更适合于储能领域。  相似文献   

4.
用氢氧化物共沉淀法结合固相反应合成锂离子电池正极材料Li_(1.167)Ni_(0.4-x)Mn_(0.383)Co_(0.05)Ti_xO_2(x=0、0.02、0.04、0.06和0.08)。通过XRD、SEM、电感耦合等离子体原子发射光谱(ICP-AES)和电化学性能测试,考察Ti掺杂量x对产物晶体结构和电化学性能的影响。Ti掺杂可提高材料的循环性能,Li_(1.167)Ni_(0.36)Mn_(0.383)Co_(0.05)Ti_(0.04)O_2材料具有最优的电化学性能,以0.1 C在2.0~4.8 V循环,首次放电比容量为186.6 m Ah/g,循环10次的容量保持率为99.4%。  相似文献   

5.
采用高温固相法分别制备Li Mn_2O_4和Li_(1.3)Al_(0.3)Ti_(1.7)(P O_4)_3材料,分别以质量比8∶2和6∶4不同比例复合做正极材料,利用X射线衍射仪(XRD)和扫描电子显微镜(SEM)进行表征测试,恒流充放电、循环伏安法和电化学工作站研究其电化学性能,综合研究材料的性能。结果表明:质量比8∶2的样品颗粒分布比较均匀,边界清晰。通过电化学性能测试得出8∶2的样品首次冲放电效率可达到93.58%,纯的Li Mn_2O_4电极中样品的氧化还原峰更尖锐,电极反应速率快,氧化还原性能更好,纯的Li Mn_2O_4在0.1 C下循环50次后比容量保持率为90.3%。  相似文献   

6.
吴汉杰  梁兴华 《电源技术》2017,(11):1520-1521,1540
采用高温固相合成法制备锰基正极材料Li_(1.2)Ni_(0.13-x/3)Co_(0.13-x/3)Mn_(0.54-x/3)Cr_xO_2(x=0,0.01,0.02,0.03),其中合成的锰基正极材料Li_(1.2)Ni_(0.13-x/3)Co_(0.13-x/3)Mn_(0.54-x/3)Cr_xO_2(x=0.02)的粒径分布均匀、结晶程度极高和结构稳定性很好,在不同倍率0.1C、0.2 C、0.5 C、1 C和2 C下的放电比容量分别达到332.11、308.36、271.06、191.56、113.92 m Ah/g,并在0.1 C下循环50次后的放电比容量维持率为97%,所以少量Cr3+的掺杂对正极材料Li_(1.2)Ni_(0.13)Co_(0.13)Mn_(0.54)O_2的充放电比容量、倍率特性和循环稳定性等电化学性能更好。  相似文献   

7.
以LiNO_3、Ni(NO_3)_2·6 H_2O、Co(CH_3COO)_2·4 H_2O和Mn(CH_3COO)_2·4 H_2O为原料,用燃烧法制备了富锂层状锂离子电池正极材料Li[Li_(0.2)Mn_(0.54)Ni_(0.13)Co_(0.13)]O_2和不同La掺杂量的正极材料Li[Li_(0.2)Mn_(0.54-x)Ni_(0.13)Co_(0.13)La_x]O_2(x=0,0.01,0.03,0.05)。对制备的样品进行了XRD、S EM、EDS、电池充放电循环、EIS等表征和测试,进一步分析了掺La量对该富锂正极材料结构、形貌及电化学性能的影响。实验结果表明,掺杂前后的四种材料都具有典型的层状α-Na FeO_2结构,说明掺杂后并未改变材料的层状结构;在2.0~4.7 V充放电,当电流为0.1 C(1 C=200 mA/g)时,制备的正极材料Li-[Li_(0.2)Mn_(0.54-x)Ni_(0.13)Co_(0.13)La_x]O_2(x=0.03)具有最高的首次充放电比容量,分别为250.51和179.45 mAh/g,其首次库仑效率从Li[Li_(0.2)Mn_(0.54)Ni_(0.13)Co_(0.13)]O_2的63.5%提高到71.6%,以0.5 C循环50次,放电比容量保持在136.05 mAh/g。  相似文献   

8.
Li4Ti5O12的合成及性能研究   总被引:3,自引:1,他引:2  
采用固相反应合成出锂离子电池负极材料Li_4Ti_5O_(12)。考察了两种原料混合方法以及掺杂石墨对产品性能的影响。对产品进行了XRD(X射线衍射)、SEM(扫描电子显微镜)及电化学性能测试研究。结果表明,球磨混合原料的方法制备出的Li4Ti5O12颗粒更均匀,具有更好的电化学性能;掺杂石墨后,产品的大电流充放电性能得到改善。  相似文献   

9.
分别采用硝酸铝[Al(NO_3)_3]、异丙醇铝(C_9H_(21)AlO_3)及纳米氧化铝(nano-Al_2O_3)为原料,通过不同方法对富锂层状氧化物正极材料Li_(1.15)Ni_(0.17)Co_(0.11)Mn_(0.57)O_2进行包覆改性,研究了不同铝源为原材料进行Al_2O_3包覆对Li_(1.15)Ni_(0.17)Co_(0.11)Mn_(0.57)O_2的结构和电化学性能的影响。采用X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)及电化学测试等方法来表征包覆前后Li_(1.15)Ni_(0.17)Co_(0.11)Mn_(0.57)O_2材料的表面形貌和电化学性能。研究结果表明,Al(NO_3)_3为铝源的包覆提高了电池的首次比容量、循环性能及倍率性能,以C_9H_(21)AlO_3为铝源的包覆层对电池的循环性能有比较好的提升。  相似文献   

10.
锂离子电池具有高的功率密度和能量密度,是最有前景的电动汽车和便携式电器设备的电源之一。而提高锂离子电池电极材料的安全性和电化学性能是目前所面临的挑战之一。Li_4Ti_5O_(12)负极材料具有较高的锂离子扩散系数和安全性,可在大电流下快速充放电,被认为是有可能取代石墨的新型锂离子电池负极材料。但是,Li_4Ti_5O_(12)材料电子电导率低,导电性能差,限制了其在实际生产中的应用。介绍了目前在Li_4Ti_5O_(12)材料改性过程中所采用的方法,包括合成方法、掺杂、表面修饰,以及Li_4Ti_5O_(12)材料的应用和理论计算,分析了Li_4Ti_5O_(12)的研究方向和发展趋势。  相似文献   

11.
研究了叠片型相碳微球/石墨//LiNi_(0.3)Co_(0.3)Mn_(0.3)O_2储能用锂离子电池高温循环电化学性能和容量衰减机理。运用恒流恒压模式进行充放电测试,利用微分容量分析正极和负极电位与容量变化关系,电化学交流阻抗谱分析电池、正负极在循环过程阻抗变化趋势,扫描电子显微镜(SEM)和X射线粉末衍射光谱测试分析(XRD)循环前后正极与负极材料形貌和结构变化。结果表明,电池容量的衰减主要来自于电池极化损失,而极化损失与循环过程负极SEI膜增厚和晶格缩小导致扩散动力学能力下降有关。本研究对储能锂离子电池体系性能改善提供实验基础和理论支持。  相似文献   

12.
使用磷酸铁锂(LiFePO4)和钛酸锂(Li4Ti5O12)做正、负极活性材料,制备锂离子电池,并测试其性能。用三电极法考察不同配比时正负电极充放电电位的变化,并据此确定了电池中正负极的容量配比。性能测试结果表明,所制备的锂离子电池具有优异的循环稳定性,容量发挥好。正负极容量配比1.4时,18650圆柱电池负极钛酸锂的容量发挥为160mAh/g。  相似文献   

13.
杨尘  汪涛  王金龙  熊明松 《电池》2018,(1):45-48
采用LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2三元正极材料匹配钛酸锂(Li_4Ti_5O_(12))负极材料,制备8 Ah软包装锂离子电池,注液前分别烘烤24 h和36 h,电芯水分约为0.030%和0.015%,研究水分对电池高温性能的影响。与水分0.015%的电池相比,水分0.030%的电池首次库仑效率较低,极化明显。在55℃下高温搁置7 d后,电池容量保持率和恢复率结果显示:水分0.030%的电池为98.5%和99.4%,而水分0.015%的电池为99.5%和100.1%,均高于0.030%水分的电池;55℃下3 C循环(1.5~2.7 V)第2 000次时,0.030%和0.015%水分的电池容量保持率分别为87.8%和89.4%。较低的水分可提高电池在高温下的搁置和循环性能。  相似文献   

14.
电极材料Li_4Ti_5O_(12)是一种具有"零应变"性质的负极材料,电化学性能十分优异,是锂离子电池负极材料的研究热点之一。制备Li_4Ti_5O_(12)材料的方法除了传统的高温固相合成法,还有溶胶-凝胶法、水热(溶剂热)法、高能球磨法、微波法和喷雾干燥法等。综述了近几年来Li_4Ti_5O_(12)制备方法的研究进展。  相似文献   

15.
以LiOH为锂源,C_(16)H_(36)O_4Ti为钛源,采用液相法制备Li_4Ti_5O_(12)样品,并考察了烧结温度及热处理时间对材料的影响。为提高Li_4Ti_5O_(12)的导电性,实验选取PVA为碳源以制备Li_4Ti_5O_(12)/C材料。结果表明,Li_4Ti_5O_(12)经5%及10%质量分数的PVA热解处理后,所得Li_4Ti_5O_(12)/C的常温循环稳定性、倍率性能得到显著改善。5C倍率下60次充放电循环后,5%、10%质量分数Li_4Ti_5O_(12)/C材料分别可保持123mAh/g、125mAh/g的放电容量。  相似文献   

16.
以NiCl_2·6 H_2O和MnCl_2·4 H_2O为原料,采用溶剂热法可制备出Ni_(0.5)Mn_(1.5)(CO_3)_2前驱体,将前驱体进行空烧和锂化可成功制备出具有高电位的LiNi_(0.5)Mn_(1.5)O_4正极材料。分别从磁力搅拌混合的搅拌速率与时间,以及空烧、锂化工艺的影响因素出发,探讨了不同条件下合成前驱体Ni_(0.5) Mn_(1.5)(CO_3)_2、中间产物Ni_3Mn_7O_x及终产物LiNi_(0.5)Mn_(1.5)O_4的结构与形貌。对得到的正极材料LiNi_(0.5)Mn_(1.5)O_4进行电化学性能测试,结果表明:添加非离子活性剂PVP后,慢速下磁力搅拌时间4 h,控制反应温度200℃,反应时间30 min时得到的前驱体结构均匀,并通过空气中500℃处理(1℃/min),800℃条件下在LiOH∶Li_2NO_3=1∶2 (摩尔比)中锂化5 h,以0.5℃/min降温速率得到的正极材料LiNi_(0.5)Mn_(1.5)O_4具有最优的电化学性能。在0.1 C条件下放电比容量可达到150 mAh/g以上,且倍率性能和循环稳定性好。  相似文献   

17.
钛酸锂(Li_4Ti_5O_(12),LTO)由于具有诸多优点,如超长的循环寿命、优异的倍率循环性能和良好的安全性,被认为是最具潜力的负极材料,有望在储能领域大规模应用。该文通过测试商用软包NCM/LTO基锂离子电池(标称容量10A?h,额定电压2.2~3.5V)在不同温度下5400次循环的容量衰减,获得循环放电容量曲线。通过对其进行特定循环周数的节点测试,获得电池在不同温度下的0.1C放电容量,分离电池的不可逆容量损失,利用阿仑尼乌斯公式建立容量衰减模型,并拟合曲线,公式很好地符合了不同温度的衰减情况,并得到在温度T与循环时间tn下的容量预测经验公式,分别对2500、5000、7500和10000h不同温度下的容量进行预测。  相似文献   

18.
采用参比电极确定18650型钛酸锂(Li_4Ti_5O_(12))/钴酸锂(LiCoO_2)电池在45℃下循环失效后的限容电极,对限容电极进行形貌、结构、交流阻抗及循环伏安等分析。电池失效后,充放电限容电极均为LiCoO_2正极;该电极失效的主要原因是活性物质结构被破坏,LiCoO_2的晶粒细化且内部微观应变较大,导致极片的界面性能下降及嵌脱锂动力学严重降低。  相似文献   

19.
锰酸锂正极材料在充放电循环过程中容量衰减严重,严重影响其大规模应用。针对其容量衰减严重的问题,通过固相制备出Li_(0.95)Na_(0.05)Mg_(0.1)Mn_(1.9)O_4正极材料,并用X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)、能量散射光谱(EDS)、充放电测试、CV和EIS对其结构、形貌及电化学性能进行了研究。结果表明,Mg2+、Na+的掺杂未改变Li Mn2O4的结构。在0.2 C下,样品Li Mn2O4和Li_(0.95)Na_(0.05)Mg_(0.1)Mn_(1.9)O_4的首次放电比容量分别为127.1 m Ah/g和123.3 m Ah/g,充放电循环100次后,其容量保持率分别为77.34%和94.81%,Mg2+、Na+掺杂后,材料的初始放电比容量略有降低,但循环性能明显得到了改善。在10 C下,Li_(0.95)Na_(0.05)Mg_(0.1)Mn_(1.9)O_4的放电比容量高达92.4 m Ah/g。实验表明,Mg2+、Na+的共同掺杂有效改善了Li Mn2O4的循环稳定性和倍率性能。  相似文献   

20.
吴小兰  王光俊  陈炜  张宏立 《电池》2017,(6):347-350
选用LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2(NCM)和LiMn_(0.8)Fe_(0.2)PO_4(LMFP)复合正极材料,与石墨负极材料制成额定容量为38 Ah的2714891型电池,研究55℃下电池的循环性能,对影响循环性能的电解液和电极进行分析。负极容量衰减是高温循环性能衰减的主要因素,负极石墨比容量测试分析发现其容量损失占负极总损失的85.1%。石墨电化学阻抗谱(EIS)测试结果表明:高温循环后,石墨表面脱嵌锂活性降低,电化学反应难度增大;扫描电子显微镜(SEM)与BET比表面积测试表明:石墨表面结构破坏,体相发生膨胀。石墨本征结构的变化,是负极劣化的主要因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号