首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
路径规划是移动机器人的热门研究之一,是实现机器人自主导航的关键技术。针对移动机器人路径规划的算法进行研究,以了解不同条件下路径规划算法的发展与应用,系统性地总结了路径规划的研究现状和发展。针对移动机器人路径规划的特点,将其划分为智能搜索算法、基于人工智能算法、基于几何模型算法和用于局部避障算法。基于上述分类,介绍了近年来具有代表性的研究成果,重点分析各类规划算法的优缺点,对移动机器人路径规划的未来发展趋势进行展望,为移动机器人路径规划研究提供一定的思路。  相似文献   

2.
《Advanced Robotics》2013,27(5):385-388
Our research objective is to realize sensor-based navigation for car-like mobile robots. We adopt the generalized Voronoi graph (GVG) for the robot's local path and a map representation. It has the advantage to describe the mobile robot's path for sensor-based navigation from the point of view of completeness and safety. However, it is impossible to apply the path to car-like mobile robots directly, because the limitation of the minimum turning radius for a car-like robot may prevent it from following the GVG exactly. To solve this problem, we propose a local smooth path-planning algorithm for car-like mobile robots. Basically, an initial local path is generated by a conventional path-planning algorithm using GVG theory and it is modified smoothly by a Bezier curve to enable the car-like robots to follow it by maximizing our evaluation function. In this paper, we introduce a local smooth path-planning algorithm based on the GVG and explain the details of our evaluation function. Simulation and experimental results support the validity of the algorithm.  相似文献   

3.
In this paper, a novel knowledge based genetic algorithm (GA) for path planning of multiple robots for multiple targets seeking behaviour in presence of obstacles is proposed. GA technique has been incorporated in Petri-Net model to make an integrated navigational controller. The proposed algorithm is based upon an iterative non-linear search, which utilises matches between observed geometry of the environment and a priori map of position locations, to estimate a suitable heading angle, there by correcting the position and orientation of the robots to find targets. This knowledge based GA is capable of finding an optimal or near optimal robot path in complex environments. The Petri-GA model can handle inter robot collision avoidance more effectively than the stand alone GA. The resulting navigation algorithm has been implemented on real mobile robots and tested in various environments to validate the developed control scheme.  相似文献   

4.
周方波  赵怀林  刘华平   《智能系统学报》2022,17(5):1032-1038
在移动机器人执行日常家庭任务时,首先需要其能够在环境中避开障碍物,自主地寻找到房间中的物体。针对移动机器人如何有效在室内环境下对目标物体进行搜索的问题,提出了一种基于场景图谱的室内移动机器人目标搜索,其框架结合了导航地图、语义地图和语义关系图谱。在导航地图的基础上建立了包含地标物体位置信息的语义地图,机器人可以轻松对地标物体进行寻找。对于动态的物体,机器人根据语义关系图中物体之间的并发关系,优先到关系强度比较高的地标物体旁寻找。通过物理实验展示了机器人在语义地图和语义关系图的帮助下可以实现在室内环境下有效地寻找到目标,并显著地减少了搜索的路径长度,证明了该方法的有效性。  相似文献   

5.
Mobile robots have been widely implemented in industrial automation and smart factories. Different types of mobile robots work cooperatively in the workspace to complete some complicated tasks. Therefore, the main requirement for multi-robot systems is collision-free navigation in dynamic environments. In this paper, we propose a sensor network based navigation system for ground mobile robots in dynamic industrial cluttered environments. A range finder sensor network is deployed on factory floor to detect any obstacles in the field of view and perform a global navigation for any robots simultaneously travelling in the factory. The obstacle detection and robot navigation are integrated into the sensor network and the robot is only required for a low-level path tracker. The novelty of this paper is to propose a sensor network based navigation system with a novel artificial potential field (APF) based navigation algorithm. Computer simulations and experiments confirm the performance of the proposed method.  相似文献   

6.
针对目前局部路径规划算法只适用于单车体机器人的问题,提出了一种针对拖车式移动机器人的动态窗口法。首先,利用多车体结构的路径跟踪方程实现对拖车式移动机器人的运动控制;然后,利用评价函数同时对牵引车和拖车进行评价并根据权重相加;最后,针对拖车结构特性,添加了运动过程中牵引车与拖车的夹角约束,保证运动轨迹的稳定性。仿真实验表明:拖车式移动机器人的运动控制可满足收敛性,同时所提算法实现了拖车式移动机器人局部路径规划的任务,且在运动过程中夹角变化均未超出限制。该研究对拖车式移动机器人的自主导航有极大的参考价值。  相似文献   

7.
针对在杂乱、障碍物密集的复杂环境下移动机器人使用深度强化学习进行自主导航所面临的探索困难,进而导致学习效率低下的问题,提出了一种基于轨迹引导的导航策略优化(TGNPO)算法。首先,使用模仿学习的方法为移动机器人训练一个能够同时提供专家示范行为与导航轨迹预测功能的专家策略,旨在全面指导深度强化学习训练;其次,将专家策略预测的导航轨迹与当前时刻移动机器人所感知的实时图像进行融合,并结合坐标注意力机制提取对移动机器人未来导航起引导作用的特征区域,提高导航模型的学习性能;最后,使用专家策略预测的导航轨迹对移动机器人的策略轨迹进行约束,降低导航过程中的无效探索和错误决策。通过在仿真和物理平台上部署所提算法,实验结果表明,相较于现有的先进方法,所提算法在导航的学习效率和轨迹平滑方面取得了显著的优势。这充分证明了该算法能够高效、安全地执行机器人导航任务。  相似文献   

8.
This study proposes a new approach for solving the problem of autonomous movement of robots in environments that contain both static and dynamic obstacles. The purpose of this research is to provide mobile robots a collision-free trajectory within an uncertain workspace which contains both stationary and moving entities. The developed solution uses Q-learning and a neural network planner to solve path planning problems. The algorithm presented proves to be effective in navigation scenarios where global information is available. The speed of the robot can be set prior to the computation of the trajectory, which provides a great advantage in time-constrained applications. The solution is deployed in both Virtual Reality (VR) for easier visualization and safer testing activities, and on a real mobile robot for experimental validation. The algorithm is compared with Powerbot's ARNL proprietary navigation algorithm. Results show that the proposed solution has a good conversion rate computed at a satisfying speed.  相似文献   

9.
Monocular vision-based navigation is a considerable ability for a home mobile robot. However, due to diverse disturbances, helping robots avoid obstacles, especially non-Manhattan obstacles, remains a big challenge. In indoor environments, there are many spatial right-corners that are projected into two dimensional projections with special geometric configurations. These projections, which consist of three lines, might enable us to estimate their position and orientation in 3D scenes. In this paper, we present a method for home robots to avoid non-Manhattan obstacles in indoor environments from a monocular camera. The approach first detects non-Manhattan obstacles. Through analyzing geometric features and constraints, it is possible to estimate posture differences between orientation of the robot and non-Manhattan obstacles. Finally according to the convergence of posture differences, the robot can adjust its orientation to keep pace with the pose of detected non-Manhattan obstacles, making it possible avoid these obstacles by itself. Based on geometric inferences, the proposed approach requires no prior training or any knowledge of the camera’s internal parameters, making it practical for robots navigation. Furthermore, the method is robust to errors in calibration and image noise. We compared the errors from corners of estimated non-Manhattan obstacles against the ground truth. Furthermore, we evaluate the validity of convergence of differences between the robot orientation and the posture of non-Manhattan obstacles. The experimental results showed that our method is capable of avoiding non-Manhattan obstacles, meeting the requirements for indoor robot navigation.   相似文献   

10.
Multi-robot sensor-based coverage path planning requires every point given in the workspace has to be covered at least by a sensor of a robot in the robot team. In this study, a novel algorithm was proposed for the sensor-based coverage of narrow environments by considering energy capacities of the robots. For this purpose, the environment was modeled by a Generalized Voronoi diagram-based graph to guarantee complete sensor-based coverage. Then, depending on the required arc set, a complete coverage route was created by using the Chinese Postman Problem or the Rural Postman Problem, and this route was partitioned among robots by considering energy capacities. Route partitioning was realized by modifying the Ulusoy partitioning algorithm which has polynomial complexity. This modification handles two different energy consumptions of mobile robots during sensor-based coverage, which was not considered before. The developed algorithm was coded in C++ and implemented on P3-DX mobile robots both in laboratory and in MobileSim simulation environments. It was shown that the convenient routes for energy constrained multi-robots could be generated by using the proposed algorithm in less than 1 s.  相似文献   

11.
Due to the requirements for mobile robots to search or rescue in unknown environments, reactive navigation which plays an essential role in these applications has attracted increasing interest. However, most existing reactive methods are vulnerable to local minima in the absence of prior knowledge about the environment. This paper aims to address the local minimum problem by employing the proposed boundary gap (BG) based reactive navigation method. Specifically, the narrowest gap extraction algorithm (NGEA) is proposed to eliminate the improper gaps. Meanwhile, we present a new concept called boundary gap which enables the robot to follow the obstacle boundary and then get rid of local minima. Moreover, in order to enhance the smoothness of generated trajectories, we take the robot dynamics into consideration by using the modified dynamic window approach (DWA). Simulation and experimental results show the superiority of our method in avoiding local minima and improving the smoothness.   相似文献   

12.
纯粹的反应式导航算法在复杂未知环境下易陷入局部极小,为此提出一种基于局部子目标和禁忌搜索的自主导航算法.以当前可视区域内障碍物的关键角点为搜索邻域,利用禁忌搜索算法执行优化操作生成当前子目标,进而采用反应式导航算法对其进行跟踪,最终通过子目标的动态切换引导机器人驶达目标位置.算法可有效克服局部极小,显著提高机器人在复杂环境下的自主性.理论分析和仿真实验验证了算法的可行性和有效性.  相似文献   

13.
Complete coverage navigation (CCN) requires a special type of robot path planning, where the robots should pass every part of the workspace. CCN is an essential issue for cleaning robots and many other robotic applications. When robots work in unknown environments, map building is required for the robots to effectively cover the complete workspace. Real-time concurrent map building and complete coverage robot navigation are desirable for efficient performance in many applications. In this paper, a novel neural-dynamics-based approach is proposed for real-time map building and CCN of autoxnomous mobile robots in a completely unknown environment. The proposed model is compared with a triangular-cell-map-based complete coverage path planning method (Oh , 2004) that combines distance transform path planning, wall-following algorithm, and template-based technique. The proposed method does not need any templates, even in unknown environments. A local map composed of square or rectangular cells is created through the neural dynamics during the CCN with limited sensory information. From the measured sensory information, a map of the robot's immediate limited surroundings is dynamically built for the robot navigation. In addition, square and rectangular cell map representations are proposed for real-time map building and CCN. Comparison studies of the proposed approach with the triangular-cell-map-based complete coverage path planning approach show that the proposed method is capable of planning more reasonable and shorter collision-free complete coverage paths in unknown environments.   相似文献   

14.
The paper deals with supervised robot navigation in known environments. The navigation task is divided into two parts, where one part of the navigation is done by the supervisor system i.e. the system sets the vector marks on the salient edges of the virtual environment map and guides the robot to reach these marks. Mobile robots have to perform a specific task according to the given paths and solve the local obstacles avoidance individually. The salient point’s detection, vector mark estimation and optimal path calculation are done on the supervisor computer using colored Petri nets. The proposed approach was extended to simulate a flexible manufacturing system consisting of swarm of 17 robots, 17 - warehouses and 17 - manufacturing places. Our experimental investigation showed that simulated mobile robots with proposed supervision system were efficiently moving on the planned path.  相似文献   

15.
Learning to select distinctive landmarks for mobile robot navigation   总被引:1,自引:0,他引:1  
In landmark-based navigation systems for mobile robots, sensory perceptions (e.g., laser or sonar scans) are used to identify the robot’s current location or to construct internal representations, maps, of the robot’s environment. Being based on an external frame of reference (which is not subject to incorrigible drift errors such as those occurring in odometry-based systems), landmark-based robot navigation systems are now widely used in mobile robot applications.The problem that has attracted most attention to date in landmark-based navigation research is the question of how to deal with perceptual aliasing, i.e., perceptual ambiguities. In contrast, what constitutes a good landmark, or how to select landmarks for mapping, is still an open research topic. The usual method of landmark selection is to map perceptions at regular intervals, which has the drawback of being inefficient and possibly missing ‘good’ landmarks that lie between sampling points.In this paper, we present an automatic landmark selection algorithm that allows a mobile robot to select conspicuous landmarks from a continuous stream of sensory perceptions, without any pre-installed knowledge or human intervention during the selection process. This algorithm can be used to make mapping mechanisms more efficient and reliable. Experimental results obtained with two different mobile robots in a range of environments are presented and analysed.  相似文献   

16.
For miniaturized mobile robots that aim at exploring unknown environments, no-contact 3D sensing of basic geometrical features of the surrounding environment is one of the most important capabilities for survival and the mission. In this paper, a low-cost active 3D triangulation laser scanner for indoor navigation of miniature mobile robots is presented. It is implemented by moving both a camera and a laser diode together on the robot’s movable part. The movable part is actuated by a servo motor through a gear train to achieve ±90° scanning view angle. The software module includes image processing and data post-processing. 3D world coordinates are calculated from 2D image coordinates based on the triangulation principle. With a 3D laser scanning method, navigation algorithms for obstacle avoidance and gateway passing are proposed. Finally, experiments are conducted to validate performance of the scanner and to test the efficiency of the navigation algorithms.  相似文献   

17.
This paper presents a Probabilistic Road Map (PRM) motion planning algorithm to be queried within Dynamic Robot Networks—a multi-robot coordination platform for robots operating with limited sensing and inter-robot communication.

First, the Dynamic Robot Networks (DRN) coordination platform is introduced that facilitates centralized robot coordination across ad hoc networks, allowing safe navigation in dynamic, unknown environments. As robots move about their environment, they dynamically form communication networks. Within these networks, robots can share local sensing information and coordinate the actions of all robots in the network.

Second, a fast single-query Probabilistic Road Map (PRM) to be called within the DRN platform is presented that has been augmented with new sampling strategies. Traditional PRM strategies have shown success in searching large configuration spaces. Considered here is their application to on-line, centralized, multiple mobile robot planning problems. New sampling strategies that exploit the kinematics of non-holonomic mobile robots have been developed and implemented. First, an appropriate method of selecting milestones in a PRM is identified to enable fast coverage of the configuration space. Second, a new method of generating PRM milestones is described that decreases the planning time over traditional methods. Finally, a new endgame region for multi-robot PRMs is presented that increases the likelihood of finding solutions given difficult goal configurations.

Combining the DRN platform with these new sampling strategies, on-line centralized multi-robot planning is enabled. This allows robots to navigate safely in environments that are both dynamic and unknown. Simulations and real robot experiments are presented that demonstrate: (1) speed improvements accomplished by the sampling strategies, (2) centralized robot coordination across Dynamic Robot Networks, (3) on-the-fly motion planning to avoid moving and previously unknown obstacles and (4) autonomous robot navigation towards individual goal locations.  相似文献   


18.
陆国庆  孙昊 《计算机应用》2021,41(7):2121-2127
机器人在未知环境自主探索时,需要快速准确地获取环境地图信息。针对高效探索和未知环境的地图构建问题,将随机行走算法应用于群机器人的探索中,机器人模拟布朗运动,对搜索区域建图。然后,改进了布朗运动算法,通过设置机器人随机行走时的最大旋转角度,来避免机器人重复性地搜索一个区域,使机器人在相同时间内探索更多的区域,提高机器人的搜索效率。最后,通过搭载激光雷达的多个移动机器人进行了仿真实验,实验分析了最大转角增量、机器人数量以及机器人运动步数对搜索区域的影响。  相似文献   

19.
林辉灿  吕强  王国胜  张洋  梁冰 《计算机应用》2017,37(10):2884-2887
移动机器人在探索未知环境且没有外部参考系统的情况下,面临着同时定位和地图构建(SLAM)问题。针对基于特征的视觉SLAM(VSLAM)算法构建的稀疏地图不利于机器人应用的问题,提出一种基于八叉树结构的高效、紧凑的地图构建算法。首先,根据关键帧的位姿和深度数据,构建图像对应场景的点云地图;然后利用八叉树地图技术进行处理,构建出了适合于机器人应用的地图。将所提算法同RGB-D SLAM(RGB-Depth SLAM)算法、ElasticFusion算法和ORB-SLAM(Oriented FAST and Rotated BRIEF SLAM)算法通过权威数据集进行了对比实验,实验结果表明,所提算法具有较高的有效性、精度和鲁棒性。最后,搭建了自主移动机器人,将改进的VSLAM系统应用到移动机器人中,能够实时地完成自主避障和三维地图构建,解决稀疏地图无法用于避障和导航的问题。  相似文献   

20.
Autonomous navigation of legged robots in complex environments poses a great deal of challenges compared with ground vehicles because of their different terrain traverse capabilities. An obstacle for vehicles may be traversable for legged robots. This paper proposes a real-time obstacle detection algorithm for legged robots using the Microsoft Kinect sensor. First, the elevation map of a reference grid is calculated. Then an obstacle definition for legged robots is proposed, which makes it possible for a legged robot to discriminate traversable areas from non-traversable areas. To reduce computational cost, sometimes, efficient judging rules are developed to identify obstacles. A spiral search strategy is proposed to find the most ground-like point as the starting point for graph-based traversal. Breadth-First-Traversal of the graph is used to label all traversable areas connecting to the starting point. Experimental results demonstrate that our algorithm is reliable and efficient. The proposed algorithm can be employed in real-time obstacle detection for legged robots in complex environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号