首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
According to the UN Population Reference Bureau, 1.4 billion more people will have settled in urban areas by 2030. One of the key environmental effects of rapid urbanization is the urban heat island (UHI) effect. Understanding the mechanism of surface UHIs associated with land-use/land-cover (LULC) change patterns is important for improving the ecology and sustainability of cities. In this article, time series Landsat Thematic Mapper (TM)/Enhanced Thematic Mapper Plus (ETM+) data were used to extract LULC data and land surface temperature (LST) data for the city of Jinan, China, from 1987 to 2011, a period during which the city experienced rapid urbanization. With the aid of a geographical information system (GIS) and remote sensing (RS) approach, the changes in this urban area’s LULC were explored, and the impact of these changes on the spatiotemporal patterns and underlying driving forces of the surface UHI effect were further quantitatively characterized. The results show that significant changes in land use and land cover occurred over the study period, with loss of farmland, forest, and shrub vegetation to urban use, leading to spatial growth of impervious surfaces. Consequently, the land surface characteristics and spatiotemporal patterns of the UHI have changed drastically. According to the seasonal and inter-annual variations in intensity of UHIs, mean differences in UHI intensity between city centre, peri-urban, and nearby rural areas were stronger during summer and spring and weaker during winter and autumn. Spatially, there were significant LST gradients from the city centre to surrounding rural areas. The city centre exhibited higher LSTs and remarkable variation in LSTs, while the surrounding rural areas exhibited lower LSTs and lower variation in LSTs. Moreover, the analysis of LSTs and indices showed that great differences of temperature even existed in a LULC type except for variations between different LULC types. In addition, a local-level analysis revealed that the intensity of the UHI effect is proportional to the size of the urban area, the population density, and the frequent occurrence of certain activities.  相似文献   

2.
This paper presents findings of a land-use and land-cover (LULC) change mapping exercise conducted in Freetown, Sierra Leone. Nine LULC classes were mapped from multi-temporal Landsat data of 1974, 1986 and 2000. Special attention was given to the growth or otherwise of agricultural land in relation to other LULC classes. Conversion of one land-use/-cover type to the other was identified, and its effects discussed. Major conversions occurred between agricultural lands, grasslands, evergreen forest, built-up areas and barren land. Built-up areas increased by at least 140% between 1974 and 2000, suggesting a high urbanization rate. About 882 ha (27%) of agricultural lands in 1986 were converted to residential purposes in 2000, especially at the urban fringes, in response to an increase in population. Some 14% of evergreen forest was found to have been converted to agricultural land. These major conversions suggest a strong linkage between urbanization, agriculture and deforestation.  相似文献   

3.
Impervious surface area (ISA) from the Landsat TM-based NLCD 2001 dataset and land surface temperature (LST) from MODIS averaged over three annual cycles (2003-2005) are used in a spatial analysis to assess the urban heat island (UHI) skin temperature amplitude and its relationship to development intensity, size, and ecological setting for 38 of the most populous cities in the continental United States. Development intensity zones based on %ISA are defined for each urban area emanating outward from the urban core to the non-urban rural areas nearby and used to stratify sampling for land surface temperatures and NDVI. Sampling is further constrained by biome and elevation to insure objective intercomparisons between zones and between cities in different biomes permitting the definition of hierarchically ordered zones that are consistent across urban areas in different ecological setting and across scales.We find that ecological context significantly influences the amplitude of summer daytime UHI (urban-rural temperature difference) the largest (8 °C average) observed for cities built in biomes dominated by temperate broadleaf and mixed forest. For all cities combined, ISA is the primary driver for increase in temperature explaining 70% of the total variance in LST. On a yearly average, urban areas are substantially warmer than the non-urban fringe by 2.9 °C, except for urban areas in biomes with arid and semiarid climates. The average amplitude of the UHI is remarkably asymmetric with a 4.3 °C temperature difference in summer and only 1.3 °C in winter. In desert environments, the LST's response to ISA presents an uncharacteristic “U-shaped” horizontal gradient decreasing from the urban core to the outskirts of the city and then increasing again in the suburban to the rural zones. UHI's calculated for these cities point to a possible heat sink effect. These observational results show that the urban heat island amplitude both increases with city size and is seasonally asymmetric for a large number of cities across most biomes. The implications are that for urban areas developed within forested ecosystems the summertime UHI can be quite high relative to the wintertime UHI suggesting that the residential energy consumption required for summer cooling is likely to increase with urban growth within those biomes.  相似文献   

4.
Urbanization is taking place at an unprecedented rate around the world, particularly in China in the past few decades. One of the key impacts of rapid urbanization on the environment is the effect of urban heat island (UHI). Understanding the effects of landscape pattern on UHI is crucial for improving the ecology and sustainability of cities. This study investigated how landscape composition and configuration would affect UHI in the Shanghai metropolitan region of China, based on the analysis of land surface temperature (LST) in relation to normalized difference vegetation index (NDVI), vegetation fraction (Fv), and percent impervious surface area (ISA). Two Landsat ETM+ images acquired on March 13 and July 2, 2001 were used to estimate LST, Fv, and percent ISA. Landscape metrics were calculated from a high spatial resolution (2.5 × 2.5 m) land-cover/land-use map. Our results have showed that, although there are significant variations in LST at a given fraction of vegetation or impervious surface on a per-pixel basis, NDVI, Fv, and percent ISA are all good predictors of LST on the regional scale. There is a strong negative linear relationship between LST and positive NDVI over the region. Similar but stronger negative linear relationship exists between LST and Fv. Urban vegetation could mitigate the surface UHI better in summer than in early spring. A strong positive relationship exists between mean LST and percent ISA. The residential land is the biggest contributor to UHI, followed by industrial land. Although industrial land has the highest LST, it has limited contribution to the overall surface UHI due to its small spatial extend in Shanghai. Among the residential land-uses, areas with low- to-middle-rise buildings and low vegetation cover have much high temperatures than areas with high-rise buildings or areas with high vegetation cover. A strong correlation between the mean LST and landscape metrics indicates that urban landscape configuration also influences the surface UHI. These findings are helpful for understanding urban ecology as well as land use planning to minimize the potential environmental impacts of urbanization.  相似文献   

5.
The continued increase in average and extreme temperatures around the globe is expected to strike urban communities more harshly because of the urban heat island (UHI). Devising natural and design-based solutions to stem the rising heat has become an important urban planning issue. Recent studies have examined the impacts of 2D/3D urban land-use structures on land surface temperature (LST), but with little attention to the shades cast by 3D objects, such as buildings and trees. It is, however, known that shades are particularly relevant for controlling summertime temperatures. This study examines the role of urban shades created by trees and buildings, focusing on the effects of shade extent and location on LST mitigation. A realistic 3D digital representation of urban and suburban landscapes, combined with detailed 2D land cover information, is developed. Shadows projected on horizontal and vertical surfaces are obtained through GIS analysis, and then quantified as independent variables explaining LST variations over grids of varying sizes with spatial regression models. The estimation results show that the shades on different 3D surfaces, including building rooftops, sun-facing façades, not-sun-facing façades, and on 2D surfaces including roadways, other paved covers, and grass, have cooling effects of varying impact, showing that shades clearly modify the thermal effects of urban built-up surfaces. Tree canopy volume has distinct effects on LST via evapotranspiration. One of the estimated models is used, after validation, to simulate the LST impacts of neighborhood scenarios involving additional greening. The findings illustrate how urban planners can use the proposed methodology to design 3D land-use solutions for effective heat mitigation.  相似文献   

6.
Thermal infrared images are being acquired by satellites for more than two decades enabling studies of the human-induced Urban Heat Island (UHI) phenomenon. As a result, the requirement of the scientific community for fast and efficient methods for extracting and analyzing the thermal patterns from a vast volume of acquired data has emerged. The present paper proposes an innovative object-based image analysis procedure to extract thermal patterns for the quantitative analysis of satellite-derived Land Surface Temperature (LST) maps. The spatial and thermal attributes associated with these objects are then calculated and used for the analyses of the intensity, the position and the spatial extent of UHIs. A case study was conducted in the Greater Athens Area, Greece. More than 3000 LST images of the area acquired by MODIS sensor over a decade were analyzed. Three daytime hot-spots were identified and studied (Megara, Elefsina-Aspropyrgos and Mesogeia). They were all found to exhibit similar behavior, gradually increasing their maximum temperature during the summer season and reaching their maxima in mid-July. The hot-spots' thermal intensities compared to a suburban area were of 9-10 °C and were found to be highly correlated to their areal extent. During the night-time, Athens center developed a typical UHI spatially coinciding with the dense urban fabric. The nighttime maximum LST peaked (on average) at the end of July, two weeks later than the daytime surface patterns. The mean spatial extent of UHI in Athens was 55.2 km2, whilst its mean intensity was 5.6 °C. The proposed automatic extraction process can be customized for other cities and potentially used for comparison of LST patterns and UHI behavior between different cities.  相似文献   

7.
Rapid changes of land use and land cover (LULC) in urban areas have become a major environmental concern due to environmental impacts, such as the reduction of green spaces and development of urban heat islands (UHI). Monitoring and management plans are required to solve this problem effectively. The Tabriz metropolitan area in Iran, selected as a case study for this research, is an example of a fast growing city. Multi-temporal images acquired by Landsat 4, 5 TM and Landsat 7 ETM+ sensors on 30 June 1989, 18 August 1998, and 2 August 2001 respectively, were corrected for radiometric and geometric errors, and processed to extract LULC classes and land surface temperature (LST). The relationship between temporal dynamics of LST and LULC was then examined. The temperature vegetation index (TVX) space was constructed in order to study the temporal variability of thermal data and vegetation cover. Temporal trajectory of pixels in the TVX space showed that most changes due to urbanization were observable as the pixels migrated from the low temperature-dense vegetation condition to the high temperature-sparse vegetation condition in the TVX space. The uncertainty analysis revealed that the trajectory analysis in the TVX space involved a class-dependant noise component. This emphasized the need for multiple LULC control points in the TVX space. In addition, this research suggests that the use of multi-temporal satellite data together with the examination of changes in the TVX space is effective and useful in urban LULC change monitoring and analysis of urban surface temperature conditions as long as the uncertainty is addressed.  相似文献   

8.
This study proposes a new four-component algorithm for land use and land cover (LULC) classification using RADARSAT-2 polarimetric SAR (PolSAR) data. These four components are polarimetric decomposition, PolSAR interferometry, object-oriented image analysis, and decision tree algorithms. First, polarimetric decomposition can be used to support the classification of PolSAR data. It is aimed at extracting polarimetric parameters related to the physical scattering mechanisms of the observed objects. Second, PolSAR interferometry is used to extract polarimetric interferometric information to support LULC classification. Third, the main purposes of object-oriented image analysis are delineating image objects, as well as extracting various textural and spatial features from image objects to improve classification accuracy. Finally, a decision tree algorithm provides an efficient way to select features and implement classification. A comparison between the proposed method and the Wishart supervised classification which is based on the coherency matrix was made to test the performance of the proposed method. The overall accuracy of the proposed method was 86.64%, whereas that of the Wishart supervised classification was 69.66%. The kappa value of the proposed method was 0.84, much higher than that of the Wishart supervised classification, which exhibited a kappa value of 0.65. The results indicate that the proposed method exhibits much better performance than the Wishart supervised classification for LULC classification. Further investigation was carried out on the respective contribution of the four components to LULC classification using RADARSAT-2 PolSAR data, and it indicates that all the four components have important contribution to the classification. Polarimetric information has significant implications for identifying different vegetation types and distinguishing between vegetation and urban/built-up. The polarimetric interferometric information extracted from repeat-pass RADARSAT-2 images is important in reducing the confusion between urban/built-up and vegetation and that between barren/sparsely vegetated land and vegetation. Object-oriented image analysis is very helpful in reducing the effect of speckle in PolSAR images by implementing classification based on image objects, and the textural information extracted from image objects is helpful in distinguishing between water and lawn. The decision tree algorithm can achieve higher classification accuracy than the nearest neighbor classification implemented using Definiens Developer 7.0, and the accuracy of the decision tree algorithm is similar with that of the support vector classification which is implemented based on the features selected using genetic algorithms. Compared with the nearest neighbor and support vector classification, the decision tree algorithm is more efficient to select features and implement classification. Furthermore, the decision tree algorithm can provide clear classification rules that can be easily interpreted based on the physical meaning of the features used in the classification. This can provide physical insight for LULC classification using PolSAR data.  相似文献   

9.
Land surface temperature (LST) is essentially considered to be one of the most important indicators used for assessment of the urban thermal environment. It is quite evident that land-use/land-cover (LULC) and landscape patterns have ecological implications at varying spatial scales, which in turn influence the distribution of habitat and material/energy fluxes in the landscape. This article attempts to quantitatively analyse the complex interrelationships between urban LST and LULC landscape patterns with the purpose of elucidating their relation to landscape processes. The study employed an integrated approach involving remote-sensing, geographic information system (GIS), and landscape ecology techniques on bi-temporal Landsat Thematic Mapper images of Southwestern Sydney metropolitan region and the surrounding fringe, taken at approximately the same time of the year in July 1993 and July 2006. First, the LULC categories and LST were extracted from the bi-temporal images. The LST distribution and changes and LST of the LULC categories were then quantitatively analysed using landscape metrics and LST zones. The results show that large differences in temperature existed in even a single LULC category, except for variations between different LULC categories. In each LST zone, the regressive function of LST with fractional vegetation cover (FVC) indicated a significant relationship between LST and FVC. Landscape metrics of LULC categories in each zone in relation to the other zones showed changing patterns between 1993 and 2006. This study also illustrates that a method integrating retrieval of LST and FVC from remote-sensing images combined with landscape metrics provides a novel and feasible way to describe the spatial distribution and temporal variation in urban thermal patterns and associated LULC conditions in a quantitative manner.  相似文献   

10.
Involuntary migration triggered by war has the capacity to generate substantial socioeconomic and environmental changes in cities of developing countries, resulting in aberrant alterations to land use and land cover (LULC). This scenario has the potential to diminish the quality of life of inhabitants of a city and present administrative challenges for government and other officials. Gauging the scope and trajectory of urban LULC changes in a war-related environment is pivotal for urban and regional planning, the sustainability of natural resources, and information needs of policy makers. Scholarships that link remote sensing to social science mostly focus on a non-conflict environment, resulting in little or no information on the ramifications of conflict-induced forced migration on changes in LULC. As a result, the role of civil conflict-induced forced migration on the composition and configuration of urban landscape in developing countries remains elusive. This study employs a dense time stack of Landsat-5 Thematic Mapper (TM) images and a hybrid classification approach that integrates linear spectral unmixing and an ensemble decision-tree classifier to characterize LULC in a primate city and two lower-ranked cities in Sierra Leone. The study examined three time-steps which span 1986–1991, 1991–2002, and 2002–2010 with the overarching goal of elucidating changes in LULC conditioned by civil conflict. Image classification accuracy (overall accuracy) ranged between 84.0% and 90.2%. The study demonstrated that civil conflict has the capacity to trigger notable growth in urban agricultural land (37.4%) in a primate city, while the expansion of residential (112.7%) and industrial/commercial (18.7%) lands is more prominent in a lower-ranked city. The study further revealed that population expansion does not necessarily result in significant growth in residential area in a primate city that has experienced civil conflict.  相似文献   

11.
城市化的显著特征是自然地表不断被热容量大的不透水面取代,进而造成城市热岛效应和严重的城市生态问题.孟中印缅经济走廊是古代南方丝绸之路的重要路段和"一带一路"建设的重要战略通道,加尔各答市是孟中印缅经济走廊印度境内的重要节点城市,战略地位重要,对其城市化进程及与地表温度相关性研究对孟中印缅经济走廊印度段建设具有重要的借鉴...  相似文献   

12.
Information on the rate and pattern of urban expansion is required by urban planners to devise proper urban planning and management policy directions. This study evaluated the dynamics and spatial pattern of Mekelle City’s expansion in the past three decades (1984–2014). Multi-temporal Landsat images and Maximum Likelihood Classifier were used to produce decadal land use/land cover (LULC) maps. Changes in LULC and spatial pattern of urban expansion were analysed by post-classification change detection and spatial metrics, respectively. The results showed that in the periods 1984–1994, 1994–2004, and 2004–2014, the built-up area increased annually by 10%, 9%, and 8%, respectively; with an average annual increment of 19% (100 ha year?1), from 531 ha in 1984 to 3524 ha in 2014. Between 1984 and 2014, about 88% of the gain in built-up area was from conversion of agricultural lands, which decreased by 39%. Extension of existing urban areas was the dominant growth type, which accounted for 54%, 75%, and 81% of the total new development during 1984–1994, 1994–2004, and 2004–2014, respectively. The spatial metrics analyses revealed urban sprawl, with increased heterogeneity and gradual dispersion in the outskirts of the city. The per capita land consumption rate (ha per person) increased from 0.009 in 1984 to 0.014 in 2014, indicating low density urban growth. Based on the prediction result, the current (2014) built-up area will double by 2035, and this is likely to have multiple socioeconomic and environmental consequences unless sustainable urban planning and development policies are devised.  相似文献   

13.
The urban morphology is regarded as one of the main reasons for urban heat island (UHI). However, its effect on UHI in city-scale urban areas has seldom been examined. In this paper, we presented a rule-based regression model for investigating the nonlinear relationship between land surface temperature (LST) and urban morphology represented by building height, building density and sky view factor (SVF) across different dates in 2005. Results found that an urban morphology of medium building height and lower density significantly yielded higher LST variation levels, whereas the lowest LST variation levels occurred in high-rise and high-dense building arrays. Compared to building height, building density had a stronger influence on LST. Medium SVF values produced the lowest LST, whereas the largest and smallest SVF values produced the highest LST. Results also showed how rule-based regression model offer great performance in detecting the nonlinear mechanisms of LST as well.  相似文献   

14.
The patterns of urban sprawl over a 20-year period presented in the study indicate unplanned development in the urban agglomerations of Ranchi, Jamshedpur and Dhanbad. The visual interpretation of Landsat (1986, 1991, 1996 and 2001) and IRS-P6 (2005) was used to map land use/land cover and analyse urban sprawl. The saturation of urban areas within municipal limits, along with pressure from the growing population, resulted in the densification of the core urban areas within Dhanbad and Jamshedpur. Comparatively, Ranchi exhibited a very high rate of built-up growth with a reducing population density, indicating a low density of built-up development. The development of built-up land at the expense of agricultural land in Ranchi Urban Agglomeration indicates poor land-transformation practices. An area of 103.6 km2 (165.66% growth) was transformed to built-up land in these cities during 1986–2005. Any future built-up development of these agglomerations should involve the use of the government city development plan.  相似文献   

15.
ABSTRACT

This paper first focuses on the study of the relationship between the urban heat island (UHI) and the selected physical variables (percentage of urban surface covers, Normalized Difference Vegetation Index (NDVI)) and social variables (population density (PDEN)), and then concentrates on the study of the relationship between UHI and the landscape spatial geometric patterns. The researched results discover that urban Land Surface Temperature (LST) is not only impacted by land cover composition, i.e. land use/cover, which is expressed in this paper as the PURB (commerce/industry/transportation), but also its spatial geometric configuration, i.e. various landscape geometric pattern metrics, which in this paper are expressed by compositional percentage of landscape area (PLAND), configurational edge density (ED), patch density (PD), landscape shape index (LSI), clumpiness index (CI), and Shannon’s diversity index (SHDI). The results show that the proportion of vegetation coverage out of a tract impacts its contribution to an entire UHI in Washington District of Columbia (DC), in particular, interspersing vegetation within a tract is capable of making a stronger mitigation effect to UHI than its concentrated form. Thus, a scatter spatial arrangement and distribution of vegetation is proposed to mitigate UHI effect.  相似文献   

16.
Compact Airborne Spectrographic Imager (CASI) hyperspectral imagery was acquired over the Little Miami River Watershed in Ohio, USA, which was one of the largest hyperspectral image acquisitions. A hierarchical approach was employed using two different classification algorithms: ‘image object segmentation’ for level 1 and ‘spectral angle mapper’ (SAM) for level 2. This classification scheme was developed to overcome the spectral inseparability of urban and rural features and to deal with radiometric distortions due to cross-track illumination. The land‐use/land‐cover (LULC) classes were urban/built, corn, soya bean, wheat, forest, dry herbaceous, grass, lentic, lotic, urban barren, rural barren and unclassified. The final phase of processing was completed after an extensive quality assurance and quality control (QA/QC) phase with 902 points. The overall accuracy was 83.9%. The data set was made available for public research and application; certainly, this product represents an improvement over more commonly utilized, coarser spatial resolution data sets such as National Land Cover Data (NLCD).  相似文献   

17.
城市建筑用地是一种复杂的土地利用类型,在电磁波反射光谱上表现出明显的异质性。因此,很难用简单的方法将其从遥感影像中准确地提取出来。在详细研究了城市建筑用地的光谱特征以后,创建了一种不直接采用影像的原始波段,而是采用由它们衍生的3个指数波段来构成新型建筑用地指数(IBI)。通过对ASTER和Landsat ETM+两种多光谱影像进行的实验表明,新指数除了能够有效地增强影像中的建筑用地信息外,还能和植被指数、水体指数一样,用于进行数值运算,从而实现了建筑用地对城市生态环境影响的定量研究。对厦门、福州两城市的实例分析表明,新的建筑指数与地表温度呈正相关关系,而与植被指数、水体指数呈负相关关系。研究进一步发现,建筑指数与地表温度的关系不是简单的线性关系,而是一种指数函数关系,说明高建筑用地比例地区的升温效应要明显高于低建筑用地比例地区,因此,对城市热岛的形成起着更大的作用。  相似文献   

18.
To analyse changes in human settlement in Shenzhen City during the past three decades, changes in land use/land cover (LULC) and urban expansion were investigated based on multi-temporal Landsat Thematic Mapper/Enhanced Thematic Mapper Plus/Operational Land Imager (TM/ETM+/OLI) images. Using C4.5-based AdaBoost, a hierarchical classification method was developed to extract specific classes with high accuracy by combining a specific number of base-classifier decisions. Along with a classification post-processing approach, the classification accuracy was greatly improved. The statistical analysis of LULC changes from 1988 to 2015 shows that built-up areas have increased 6.4-fold, whereas cultivated land and forest continually decreased because of rapid urbanization. Urban expansion driven by human activities has considerably affected the landscape change of Shenzhen. The urban-expansion pattern of Shenzhen is a mixture of three urban-expansion patterns. Among these patterns, traffic-driven urban expansion has been the main form of urban expansion for some time, especially in the Non-Special Economic Zone. In addition, by taking 8 to 10 year periods as time intervals, urban expansion in Shenzhen was divided into three stages: the early-age urbanization stage (1988–1996), the rapid urbanization stage (1996–2005), and the intensive urbanization stage (2005–2015). For different stages, the state of urban expansion is different. In long-term LULC dynamic monitoring and urban-expansion detection, it was possible to obtain 11 LULC maps, which took 2 to 4 years as a research interval. With regard to the short research periods, LULC changes and urban expansion were investigated in detail.  相似文献   

19.
ABSTRACT

Land surface temperatures (LST) in urban landscapes are typically more heterogeneous than can be monitored by the spatial resolution of satellite-based thermal infrared sensors. Thermal sharpening (TS) methods permit the disaggregation of LST based on finer-grained multispectral information, but there is continued debate over which spectral indices are most appropriate for urban TS, and how they should be configured in a predictive regression framework. In this study, we evaluate the stability of various TS kernels with respect to LST at different spatial (Landsat 8) and diurnal (MODIS) scales, and present a new TS method, global regression for urban thermal sharpening (SGRUTS), based on these findings. Of the spectral indices examined, the normalized difference built-up index (NDBI) and the normalized multi-band drought index (NMDI) were the most spatially stable for Landsat 8 and MODIS overall. Kernel performance varied diurnally, with the index-based impervious surface index (IBI) and broadband α selected for 1030 h, NDBI and NMDI selected for 1330 h, and IBI and NMDI selected for 2230 h and 130 h, respectively. Over a range of field-validated metrics, the SGRUTS scheme comprising a two-factor interaction between NDBI and NMDI was competitive with the best alternative TS models compared. This SGRUTS model is essentially a refinement of the Enhanced Physical Method for urban applications in terms of kernel selection and configuration, and has interpretative advantages over more complex statistical schemes.  相似文献   

20.
Spatially and temporally dense land surface temperature (LST) data are necessary to capture the high variability of the urban thermal environment. Sensors on board satellites with high revisit time cannot provide adequately detailed spatial information; thus, the downscaling of LST is recognized as being an important and inevitable intermediate process. In this paper, improvement in the downscaled LST accuracy is investigated, employing the statistical downscaling methodology in an urban setting. A new approach is proposed, where thermal radiances are disaggregated using multiple regression analysis and are then combined with emissivity values derived from a high-resolution image classification. Predictors include reflectance values, built-up and vegetation indices, and topographic data. Surface classification is performed utilizing machine learning techniques and fusing Sentinel-2 imagery with ancillary data. Thermal data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor are downscaled from their original resolution to 100 m in the city of Athens, Greece. Validation of sharpened temperatures is performed using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) surface temperature product and in-situ measurements. It is demonstrated that the proposed downscaling framework using ridge regression has the potential to produce reliable, high temporal LST estimates with an average error of fewer than 2 K, while consistently having a better accuracy than the reference, single-predictor downscaling of the MODIS LST product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号