首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
针对三相异步电机驱动系统,提出一种基于高阶滑模速度控制器的模型预测转矩控制策略.为了降低负载扰动对系统运行性能的影响,设计一种基于二阶Super-Twisting滑模技术的速度环控制器,以代替传统PI速度控制器,并应用Lyapunov稳定性理论对其稳定性和鲁棒性进行分析,得到使速度控制系统收敛的参数范围.为了提升转矩控制精度,基于异步电机的数学模型,采用模型预测转矩控制理论,以转矩和定子磁链为控制目标设计评价函数,得到最优输出电压矢量驱动电机运行.仿真结果表明,所提出的控制方法能有效提升系统对负载扰动的鲁棒性,并有效降低转矩波动,使电机具有良好的动态和静态运行性能.  相似文献   

2.
Brushless Direct Current Motor (BLDC) has been deployed across several kinds of applications. However, attaining a smooth torque ripple with fast response is relatively tough, as usually this is based on the varied slew rate line current in the commutation period. Hysteresis Current control has been widely used in earlier works for the maintaining incoming and outgoing phase current at the same rate throughout the commutation period. Additionally, this also helps in reducing the commutation torque ripple and delivers successful commutation. The proposed work here uses a relatively simple control technique that is primarily derived on the basis Outgoing-phase Current Discharge Hysteresis Control (OCDHC). This has been characterized to produce low response time and reduced torque ripple which has been suggested to execute in both conduction and commutation intervals. For the implementation of digital controller, we chose Xilinx Spartan 6 FPGA board. The digital controller algorithm is written using VHDL and is dumped on the FPGA. For this purpose we use Xilinx ISE and iMPACT tools. FPGA receives hall sensor output and current from BLDC motor with reduced torque ripple and generates the gate pulses which drive the IGBT switches using OCDHC control. This condition shows that the performance of the system is not primarily based on the motor parameters, excluding the stator resistance. Lastly, results obtained from the simulation and experimental results validate the significance of the proposed control technique based on response time at load conditions that vary at different junctures.  相似文献   

3.
永磁同步电机高效非线性模型预测控制   总被引:6,自引:0,他引:6  
孔小兵  刘向杰 《自动化学报》2014,40(9):1958-1966
永磁电机控制器要求电机有很强的转速跟踪能力,并且要保证系统参数变化及负荷扰动下系统的鲁棒性. 永磁电机包含很多不确定因素,是强耦合的非线性系统,传统的线性控制器很难对其进行控制. 针对永磁电机的转速控制构造非线性模型预测控制方法. 非线性永磁电机模型通过输入-输出反馈线性化策略解耦成为新的线性系统. 为保证可行解的收敛性,提出一种迭代二次规划方法来处理由输入-输出反馈线性化导致的非线性约束. 仿真结果表明,控制器能有效降低计算负担,具有很好的动态控制性能,能抑制转矩脉动,并保证在参数变化和负荷扰动下控制系统的鲁棒性.  相似文献   

4.
Brushless DC motor drives (BLDC) are finding expanded use in high performance applications where torque smoothness is essential. The nature of the square-wave current excitation waveforms in BLDC motor drives permits some important system simplifications compared to sinusoidal permanent magnet AC (PMAC) machines. However, it is the simplicity of the BLDC motor drive that is responsible for causing an additional source of ripple torque commonly known as commutation torque to develop. In this paper, a compensation technique for reducing the commutation torque ripple is proposed. With the experimental results, the proposed method demonstrates the effectiveness for a control system using the BLDC motors that requires high speed and accuracy.  相似文献   

5.

In this paper, a novel adaptive neuro-fuzzy inference system (ANFIS)-based control technique optimized by Bacterial Foraging Optimization Algorithm for speed control of matrix converter (MC)-fed brushless direct current (BLDC) motor is presented. ANFIS is considered to be one of the most promising technologies for control of electrical drives fed by MC. Optimizing the training parameters of ANFIS, to improve its performance, is still being considered by several researchers recently. Parameters of the online ANFIS controller such as learning rate (η), forgetting factor (λ) and steepest descent momentum constant (α) are optimized by using the proposed algorithm. For the purpose of comparison, proportional integral derivative controller, fuzzy logic controller, PSO-ANFIS and BAT-ANFIS are considered. Set point tracking performances of the proposed system are carried out at various operating points for an industrial BLDC motor operating at a maximum rated speed of 380 rpm and torque of 6.4 N m. Time domain specifications such as rise time, settling time, peak time, steady-state error and peak overshoot in the presence and absence of load torque disturbances are presented. Time integral performance measures such as integral square error, integral absolute error, and integral time multiplied absolute error are analyzed for various operating conditions. Speed fluctuation in the output of BLDC motor is dependent on the source current harmonics of the inverter/converter. To illustrate this, total harmonic distortion (THD) analysis is carried out for the existing PWM inverter and the proposed MC, and it is proved that MC results in reduced THD, as compared to PWM inverter. Simulation results confirm that the proposed controller outperforms the other existing control techniques under various set speed and torque conditions. Statistical analysis is effectively carried out to prove the effectiveness of the proposed controller. Experimental analysis is performed to validate the performance of the proposed control scheme.

  相似文献   

6.
针对现有电动机效率优化控制方法存在控制算法复杂的问题,提出了一种基于改进自抗扰控制器的动态解耦控制策略。自抗扰控制器省去了微分跟踪器,采用线性的扩张状态观测器和线性状态误差反馈控制律,使控制算法得以简化。仿真和实验结果表明,该控制策略在保证电动机轻载运行时效率优化的同时,具有较强的抗干扰能力和鲁棒性,提高了效率优化过程中电动机转速的动态响应速度。  相似文献   

7.
This paper presents an analysis, design, and strategy of a high-performance speed-sensorless control scheme for estimating the phase-to-phase trapezoidal back-EMF of BLDC motor drive by means of a novel stochastic deconvolution technique in the H setting, named robust stochastic H deconvolution filter. In the proposed method, unlike the conventional observer-based approaches, the back-EMF is considered as an unknown input, and no need is felt for the constancy assumption of the rotor position and speed of machine within a short period of the time in the modeling of the BLDC motor which leads to ignoring the back-EMF dynamic at high and variable speed. In addition, since high-speed operation is vital for the motor, an improved approach has also been proposed to reduce the commutation-torque-ripple at high-speed for direct torque control (DTC) strategy of three-phase BLDC motor with 120° conduction mode in parallel with the proposed method due to the fact that drive performance intensely downgrades in this mode.  相似文献   

8.
The control problem of permanent magnet (PM) synchronous motor has attracted extensive attentions in both control society and industrial applications. Much recently, a local speed tracking and nonlinear disturbance rejection problem of PM synchronous motor was investigated by nonlinear internal model design. In this paper, we propose a novel two-step controller design strategy to achieve speed tracking and nonlinear disturbance rejection of PM synchronous motor with wide speed range, which combines the advantages of classical double-loop control and nonlinear internal model control. It is worth mentioning that the proposed two-step controller design strategy can not only guarantee exact speed tracking with wide speed range, but also reject small nonlinear external disturbances in the load torque, generated by a so-called nonlinear exosystem. Simulation results demonstrate the effectiveness of our design.  相似文献   

9.
The acoustic level of a hard disk drive is an important specification. This is especially so for enterprise HDD which is required to operate under a high spinning speed. In order to reduce the acoustics level of a HDD, an in depth understanding behind the mechanisms whereby the noise is being generated in a HDD should be established. This paper will study the acoustics characteristics of a high speed permanent magnet brushless DC motor (PM BLDC) and investigate the physics underlying the generation of noise associated with a motor. An analysis procedure of the PM BLDC motor noise generating mechanisms is proposed. Through finite element analysis and experimental verification, the results indicate that the major noise source for the high speed PM BLDC motor is due to the presence of electromagnetic (EM) torque ripples. Furthermore, it has been observed that the noise radiated by a HDD can be amplified when its structural dynamics are close to the frequency components of the noise source. Finally, a methodology which discusses the steps involved in the prediction of motor radiated noise will be presented.  相似文献   

10.

This paper proposes a speed control of switched reluctance motor supplied by photovoltaic system. The proposed design of the speed controller is formulated as an optimization problem. Ant colony optimization (ACO) algorithm is employed to search for the optimal proportional integral (PI) parameters of the proposed controller by minimizing the time domain objective function. The behavior of the proposed ACO has been estimated with the behavior of genetic algorithm (GA) in order to prove the superior efficiency of the proposed ACO in tuning PI controller over GA. Also, the behavior of the proposed controller has been estimated with respect to the change of load torque, variable reference speed, ambient temperature and radiation. Simulation results confirm the better behavior of the optimized PI controller based on ACO compared with optimized PI controller based on GA over a wide range of operating conditions.

  相似文献   

11.
蔡斌军 《控制工程》2012,19(4):733-736
针对传统直接转矩控制中存在电流、磁链和转矩脉动较大及速度传感器的使用降低了系统的可靠性,增加了系统的成本等问题,提出了利用遗传算法(GA)优化的BP网络电机速度辨识方法,实现了异步电机无速度传感器直接转矩控制。该方法保持了直接转矩控制固有的转矩响应快和系统鲁棒性强的优点,降低了磁链、转矩脉动,加快了系统的响应速度,并对负载的扰动具有较强的鲁棒性,有效地改善了系统的动、静态性能,实验结果证实了该方法的可行性和有效性。  相似文献   

12.
This paper presents a design and development of Multi Sector Space Vector Pulse Width Modulation scheme (MS-SVPWM) for the speed control of brushless direct current (BLDC) motor drive. This control scheme is developed to enhance the performance of BLDC under wide range of speed and load variation. The hardware prototype is developed for 400 W, 30 V, 3000 rpm BLDC motor. The drive consists of uncontrolled rectifier unit for providing DC source to inverterunit. The proposed drive control has been done by implementing MS-SVPWM scheme using ANFIS control. The main function of ANFIS controller is to select the suitable sector for the drive and also predict the mismatching pulses by comparing conventional SVPWM and MS-SVPWM switching patterns. This new switching control technique helps to reduce switching losses of inverter and also improves an efficiency of BLDC system. This MS-SVPWM reduces the DC voltage ripple; Total Harmonic Distortion (THD) and torque ripple to the standard level. To verify and validate the practicality of the proposed system, the simulation is first performed using MATLAB Simulink tool. The hardware system is developed for the MS-SVPWM using DSPIC30F4011controller, the simulation and experimental results are presented.  相似文献   

13.
针对异步电机驱动系统中三相六开关逆变器单管故障问题,提出一种逆变器在故障状态下的三相六开关容错控制策略,较三相四开关容错控制可以提供较多的电压矢量,进而可以有效抑制转矩脉动.结合有限集预测控制思想,提出一种基于三相六开关容错逆变器的异步电机有限控制集模型预测转矩控制策略,同时采用模糊PI转速控制器替代固定参数的PI控制器,进一步提高系统的稳定性、快速性和鲁棒性.仿真结果表明, 采用此方案进行控制的异步电机驱动系统能够持续稳定运行,具有良好的动态性能,进一步验证了所提出方法的有效性.  相似文献   

14.
针对三相四开关逆变器驱动永磁同步电机(PMSM)系统,基于扩张状态观测器(ESO)技术,提出了无速度传感器的自抗扰模型预测转矩控制(ADRMPTC)策略.建立了三相四开关逆变器驱动PMSM系统的数学模型;采用ESO技术构造了PMSM系统转速观测器,以实现对转速快速准确地实时估计;用自抗扰控制器(ADRC)作为系统的转速调节器,以提高系统的鲁棒性;利用模型预测转矩控制(MPTC)方法,以达到减小转矩和磁链脉动的目的.所设计基于ESO的无速度传感器ADRMPTC策略能够使三相四开关逆变器驱动的PMSM系统可靠稳定运行,达到满意的转矩和转速控制效果.与基于PI的MPTC策略相比,本文控制策略使PMSM系统不仅具有良好的动态性能,而且具有较强的抗负载干扰能力.仿真结果验证了所提方法的正确性和有效性.  相似文献   

15.
针对三相永磁同步电机(PMSM)驱动系统,基于滑模变结构模型参考自适应(MRAS)技术,提出了一种新颖的无速度传感器模型预测转矩控制(MPTC)策略.采用滑模变结构模型参考自适应方法构造电机转速观测器,以改善速度估计精度并提高系统鲁棒性;利用模型预测转矩控制策略,以达到减小转矩和磁链纹波并提高系统控制性能的目的.仿真结果表明:就滑模MRAS观测器与MRAS观测器比较而言,基于前者的PMSM无速度传感器MPTC系统比基于后者的PMSM无速度传感器MPTC系统具有较强的鲁棒性和更好的动态性能;就MPTC与直接转矩控制(DTC)和磁场定向控制(FOC)比较而言,采用前者策略的无速度传感器电机驱动系统能够降低逆变器开关频率、减少相电流总谐波失真(THD),从而提高系统可靠性.  相似文献   

16.

This paper discusses the control performance improvement for an electric-continuous variable valve timing (E-CVVT) system using a brushless direct current (BLDC) motor and cycloid reducer. Each component of the E-CVVT system was implemented with mathematical analysis, and the response performance of the E-CVVT system was determined based on the mathematical model of the cam shaft motion, cam profile, cycloid reducer, BLDC motor, and controller. To control the intake valve timing of the engine, a cycloid speed reducer with a high reduction ratio capable of amplifying the output torque of a small BLDC motor was implemented. The change in valve speed due to the rotation of the cam shaft was represented by the curves described by the vertical movement of the valve using the cam profile. A control performance test apparatus was constructed and the torque of the intake cam shaft was measured and applied to the analysis so that the phase of the cam shaft could be changed using the E-CVVT system. To analyze the operating characteristics of the E-CVVT system, the BLDC motors were modeled using Simulink. The E-CVVT system controls the phase angle of the intake cam shaft. When the E-CVVT system sets the target phase angle, the motor controller generates the optimal motor speed command. The intake cam phase response speed depends on the setting of each PID parameter that changes the phase of the cam shaft. Through analysis and vehicle-based experiments, we confirmed the improvement of the E-CVVT system response performance according to the change of the PID parameter.

  相似文献   

17.
杨杰  黄坤 《工矿自动化》2013,39(6):52-56
针对基于PI控制器的永磁同步电动机直接转矩控制系统存在转矩波动大、易受负载变化影响的问题,设计了一种基于转速外环的自抗扰控制器,代替PI控制器以改善永磁同步电动机直接转矩控制系统的性能;采用粒子群优化算法对自抗扰控制器的相关参数进行了优化计算,改进了控制器的调节性能。仿真和实验结果表明,基于参数优化自抗扰控制器的永磁同步电动机直接转矩控制系统具有较高的抗负载扰动能力,更快的响应速度和良好的动、静态性能。  相似文献   

18.
针对传统直接转矩控制中采用开关表控制造成转矩和电流脉动,以及传统调节器不能实现对交流输入信号的无静差控制等问题,基于电机空间电压矢量的转矩和磁链2个分量解耦的控制方式和PR控制器能够在静止坐标系下实现对交流输入信号的无静差控制,将PR控制器用于永磁同步电机的直接转矩控制中,并由此设计出磁链和转矩的双PR控制器。同时,在定子磁链的观测中,采用基于转子位置和定子电流的新型定子磁链估计方法。试验结果证明,将PR控制器对交流输入信号的无静差跟踪特性应用于基于空间电压矢量调制的直接转矩控制中,系统能获得优良的动态和静态响应,取得了显著的应用成效,由此验证了所提方法的正确性和可行性。  相似文献   

19.
本文针对电流测量误差、逆变器死区效应等非理想因素造成永磁同步电机转速周期性脉动的问题,在转速外环设计插入式转速自适应重复控制器,实现对电机转速的平滑稳定控制.首先,分析各种非理想因素引起永磁同步电机稳态转速周期性脉动的机理.其次,为保证附加转速自适应重复控制器后的系统稳定性,设计零相位FIR低通滤波器、线性相位补偿器和...  相似文献   

20.
针对某履带全方位平台实际工况要求,介绍了平台总体方案,选取一款1000W无刷直流电机(BLDC)作为平台驱动电机,阐述了BLDC控制原理及其控制方案,基于DSP28335设计了电机控制器,搭建了硬件电路,编写并调试了软件程序,采用速度、电流双闭环控制方案,设定电机转速为3000rpm,测定了电机相电压、电流等数据,进行了实物实验,结果表明该控制器性能稳定,响应迅速,具有较高的实际应用价值,且为后续控制策略研究奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号