首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 553 毫秒
1.
Many manufacturing facilities generate and update production schedules, which are plans that state when certain controllable activities (e.g., processing of jobs by resources) should take place. Production schedules help managers and supervisors coordinate activities to increase productivity and reduce operating costs. Because a manufacturing system is dynamic and unexpected events occur, rescheduling is necessary to update a production schedule when the state of the manufacturing system makes it infeasible. Rescheduling updates an existing production schedule in response to disruptions or other changes. Though many studies discuss rescheduling, there are no standard definitions or classification of the strategies, policies, and methods presented in the rescheduling literature. This paper presents definitions appropriate for most applications of rescheduling manufacturing systems and describes a framework for understanding rescheduling strategies, policies, and methods. This framework is based on a wide variety of experimental and practical approaches that have been described in the rescheduling literature. The paper also discusses studies that show how rescheduling affects the performance of a manufacturing system, and it concludes with a discussion of how understanding rescheduling can bring closer some aspects of scheduling theory and practice.  相似文献   

2.
吴秀丽  孙琳 《控制与决策》2020,35(3):523-535
智能制造系统采用大量先进的信息技术,为车间实时调度提供技术基础.各类信息技术在生产制造过程中的广泛应用使得制造系统积累了大量与生产调度相关的数据,因此,通过利用历史生产调度数据和智能装备收集到的实时生产数据,建立基于数据驱动的生产实时调度方法成为新型制造环境下实现高效调度的新思路.针对智能制造环境下的混合流水车间实时调度问题,提出基于BP神经网络的数据驱动的实时调度方法,从历史近优的调度方案中提取用于调度知识挖掘的样本数据,通过BP神经网络训练学习获取生产系统状态与调度规则的映射关系网络,并将其应用于生产在线实时调度.数值实验表明,所提出的方法优于固定单一调度规则,在不同的调度性能指标下其效果均稳定且良好.  相似文献   

3.
Advanced technologies (e.g., distributed sensors, RFID, and auto-identification) can gather processing information (e.g., system status, uncertain machine breakdown, and uncertain job demand) accurately and in real-time. By combining this transparent, detailed, and real-time production information with production system physical properties, an intelligent event-driven feedback control can be designed to reschedule the release plan of jobs in real-time without work-in-process (WIP) explosion. This controller should obtain the operational benefits of pull (e.g., Toyota’s Kanban system) and still develop a coherent planning structure (e.g., MRPII). This paper focuses on this purpose by constructing a discrete event-driven model predictive control (e-MPC) for real-time WIP (r-WIP) optimization. The discrete e-MPC addresses three key modelling problems of serial production systems: (1) establish a max-plus linear model to describe dynamic transition behaviors of serial production systems, (2) formulate a model-based event-driven production loss identification method to provide feedback signals for r-WIP optimization, and (3) design a discrete e-MPC to generate the optimal job release plan. Based on a case from an industrial sewing machine production plant, the advantages of the discrete e-MPC are compared with the other two r-WIP control strategies: Kanban and MRPII. The results show that the discrete e-MPC can rapidly and cost-effectively reconfigure production logic. It can decrease the r-WIP without deteriorating system throughput. The proposed e-MPC utilizes the available transparent sensor data to facilitate real-time production decisions. The effort is a step forward in smart manufacturing to achieve improved system responsiveness and efficiency.  相似文献   

4.
Performance of a manufacturing system depends significantly on the shop floor performance. Traditionally, shop floor operational policies concerning maintenance scheduling, quality control and production scheduling have been considered and optimized independently. However, these three aspects of operations planning do have an interaction effect on each other and hence need to be considered jointly for improving the system performance. In this paper, a model is developed for joint optimization of these three aspects in a manufacturing system. First, a model has been developed for integrating maintenance scheduling and process quality control policy decisions. It provided an optimal preventive maintenance interval and control chart parameters that minimize expected cost per unit time. Subsequently, the optimal preventive maintenance interval is integrated with the production schedule in order to determine the optimal batch sequence that will minimize penalty-cost incurred due to schedule delay. An example is presented to illustrate the proposed model. It also compares the system performance employing the proposed integrated approach with that obtained by considering maintenance, quality and production scheduling independently. Substantial economic benefits are seen in the joint optimization.  相似文献   

5.
In this article the scheduling problem of dynamic hybrid flow shop with uncertain processing time is investigated and an ant colony algorithm based rescheduling approach is proposed. In order to reduce the rescheduling frequency the concept of due date deviation is introduced, according to which a rolling horizon driven strategy is specially designed. Considering the importance of computational efficiency in the dynamic environment, the traditional ant colony optimization is improved. On the one hand, a strategy of available routes compression to restrict ants’ movement is proposed so that the ants’ searching cycle for new solutions could be shorten. On the other hand, illuminating function in state transfer possibility is improved to facilitate the exploration of low pheromone trail. Performance of rolling horizon procedure and rescheduling algorithm are evaluated respectively through simulations, the results show the best parameters of rolling horizon procedure and demonstrate the feasibility and efficiency of rescheduling algorithm. An example from the practical production is addressed to verify the effectiveness of the proposed approach.  相似文献   

6.
In the practical production process of a flexible manufacturing system (FMS), unexpected disturbances such as rush orders arrival and machine breakdown may inevitably render the existing schedule infeasible. This makes dynamic rescheduling necessary to respond to the disturbances and to improve the efficiency of the disturbed FMS. Compared with the static scheduling, the dynamic rescheduling relies on more effective and robust search approaches for its critical requirement of real-time optimal response. In this paper, a filtered-beam-search (FBS) -based heuristic algorithm is proposed to solve the dynamic rescheduling problem in a large and complicated job shop FMS environment with realistic disturbances. To enhance its performance, the proposed algorithm makes improvement in the local/global evaluation functions and the generation procedure of branches. With respect to a due date-based objective (weighted quadratic tardiness), computational experiments are studied to evaluate the performance of the proposed algorithm in comparison with those of other popular methods. The results show that the proposed FBS-based algorithm performs very well for dynamic rescheduling in terms of computational efficiency and solution quality.  相似文献   

7.
介绍了一个基于维护计划的卷烟生产线设备运维管理系统,分别从系统功能模型、计划业务流程等角度描述了系统的设计思想。并阐述了系统涉及的设备润滑计划制定、派工、运行维护数据分析、系统开发与应用等关键技术。开发的系统具有一定的可集成性、可扩展性和可重构性,与移动通讯技术、数据采集技术相结合,集成在制造执行系统中,可以实现卷烟生产企业制丝、卷包生产线的实时设备运行与维护保养管理。  相似文献   

8.
In actual manufacturing processes, some unexpected disturbances, called as recessive disturbances (e.g., job set-up time variation and arrival time deviation), would gradually make the original production schedule obsolete. It is hard for production managers to perceive their presences. Thus, the impact of recessive disturbances can not be eliminated by rescheduling in time. On account of this, a rescheduling decision mechanism for recessive disturbances in RFID-driven job shops is proposed in this article, and a manifold learning method, which reduces the response time of manufacturing system, is applied in the mechanism to preprocess manufacturing data. The rescheduling decision mechanism is expected to answer the questions of whether to reschedule, when to reschedule, and which rescheduling method to be used. Firstly, RFID devices acquire the actual process completion time of all work in process (WIPs) at every WIP machining process completion time. Secondly, recessive disturbances are quantified to time accumulation error (TAE) which represents the difference between actual process completion time and planned process completion time. Lastly, according to the TAE and production managers’ experience, the rescheduling decision mechanism selects a proper rescheduling method to update or repair the original production schedule. The realization algorithms of rescheduling decision mechanism includes: (1) supervised locally linear embedding. (2) General regression neural network. (3) Least square-support vector Machine. Finally, a numerical experiment is used to demonstrate the implementation procedures of the rescheduling decision mechanism.  相似文献   

9.
This paper presents an integrated optimization model of production planning and scheduling for a three-stage manufacturing system, which is composed of a forward chain of three kinds of workshops: a job shop, a parallel flow shop consisting of parallel production lines, and a single machine shop. As the products at the second stage are assembled from the parts produced in its upstream workshop, a complicated production process is involved. On the basis of the analysis of the batch production, a dynamic batch splitting and amalgamating algorithm is proposed. Then, a heuristic algorithm based on a genetic algorithm (known as the integrated optimization algorithm) is proposed for solving the problem. Note to Practitioners-This paper presents a method for integrated production planning and scheduling in a three-stage manufacturing system consisting of a forward chain of three kinds of workshops, which is common in such enterprises as producers of automobiles and household electric appliances, as in the case of an autobody plant usually with the stamping workshop, the welding and assembling workshop, and the painting workshop. Herein, the production planning and scheduling problems are simultaneously addressed in the way that a feasible production plan can be obtained and the inventory reduced. A batch splitting and amalgamating algorithm is proposed for balancing the production time of the production lines. And a case study of the integrated planning and scheduling problem in a real autobody plant verifies the effectiveness of our method  相似文献   

10.
Process planning and scheduling are two of the most important manufacturing functions traditionally performed separately and sequentially. These functions being complementary and interrelated, their integration is essential for the optimal utilization of manufacturing resources. Such integration is also significant for improving the performance of the modern manufacturing system. A variety of alternative manufacturing resources (machine tools, cutting tools, tool access directions, etc.) causes integrated process planning and scheduling (IPPS) problem to be strongly NP-hard (non deterministic polynomial) in terms of combinatorial optimization. Therefore, an optimal solution for the problem is searched in a vast search space. In order to explore the search space comprehensively and avoid being trapped into local optima, this paper focuses on using the method based on the particle swarm optimization algorithm and chaos theory (cPSO). The initial solutions for the IPPS problem are presented in the form of the particles of cPSO algorithm. The particle encoding/decoding scheme is also proposed in this paper. Flexible process and scheduling plans are presented using AND/OR network and five flexibility types: machine, tool, tool access direction (TAD), process, and sequence flexibility. Optimal process plans are obtained by multi-objective optimization of production time and production cost. On the other hand, optimal scheduling plans are generated based on three objective functions: makespan, balanced level of machine utilization, and mean flow time. The proposed cPSO algorithm is implemented in Matlab environment and verified extensively using five experimental studies. The experimental results show that the proposed algorithm outperforms genetic algorithm (GA), simulated annealing (SA) based approach, and hybrid algorithm. Moreover, the scheduling plans obtained by the proposed methodology are additionally tested by Khepera II mobile robot using a laboratory model of manufacturing environment.  相似文献   

11.
针对敏捷制造调度环境的不确定性、动态性以及混合流水车间(HFS)调度问题的特点,设计了一种基于多Agent的混合流水车间动态调度系统,系统由管理Agent、策略Agent、工件Agent和机器Agent构成。首先提出一种针对混合流水车间环境的插值排序(HIS)算法并集成于策略Agent中,该算法适用于静态调度和多种动态事件下的动态调度。然后,设计了各类Agent间的协调机制,在生产过程中所有Agent根据各自的行为逻辑独立工作并互相协调。在发生动态事件时,策略Agent调用HIS算法根据当前车间状态产生工件序列,随后各Agent根据生成的序列继续进行协调直到完成生产。最后进行了发生机器故障、订单插入情况下的重调度以及在线调度等动态调度的实例仿真,结果表明对于这些问题,HIS算法的求解效果均优于调度规则,特别是在故障重调度中,HIS算法重调度前后的Makespan一致度达97.6%,说明系统能够灵活和有效地处理混合流水车间动态调度问题。  相似文献   

12.
This paper proposes an integrated job shop scheduling and assembly sequence planning (IJSSASP) approach for discrete manufacturing, enabling the part processing sequence and assembly sequence to be optimized simultaneously. The optimization objectives are to minimize the total production completion time and the total inventory time of parts during production. The interaction effects between the job shop schedule and the assembly sequence plan in discrete manufacturing are analyzed, and the mathematical models including the objective functions and the constraints are established for IJSSASP. Based on the above, a non-dominated sorting genetic algorithm-II (NSGA-Ⅱ) with a hybrid chromosome coding mechanism is applied to solve the IJSSASP problem. Through the case studies and comparison tests for different scale problems, the proposed IJSSASP approach is verified to be able to improve the production efficiency and save the manufacturing cost of the discrete manufacturing enterprise more effectively.  相似文献   

13.
A cyber-physical system is one of the integral parts of the development endeavor of the smart manufacturing domain and the Industry 4.0 wave. With the advances in data analytics, smart manufacturing is gradually transforming the global manufacturing landscape. In the Resistance Spot Welding (RSW) domain, the focus has been more on the physical systems, compared to the virtual systems. The cyber-physical system facilitates the integrated analysis of the design and manufacturing processes by converging the physical and virtual stages to improve product quality in real-time. However, a cyber-physical system integrated RSW weldability certification is still an unmet need. This research is to realize a real-time data-driven cyber-physical system framework with integrated analytics and parameter optimization capabilities for connected RSW weldability certification. The framework is based on the conceptualization of the layers of the cyber-physical system and can incorporate the design and machine changes. It integrates data from the analytics lifecycle phases, starting from the data collection operation, to the predictive analytics operation, and to the visualization of the design. This integrated framework aims to support decision-makers to understand product design and its manufacturing implications. In addition to data analytics, the proposed framework implements a closed-loop machine parameter optimization considering the target product design. The framework visualizes the target product assembly with predicted response parameters along with displaying the process parameters and material design parameters simultaneously. This layer should help the designers in their decision-making process and the engineers to gain knowledge about the manufacturing processes. A case study on the basis of a real industrial case and data is presented in detail to illustrate the application of the envisioned cyber-physical systems framework.  相似文献   

14.
Predictive maintenance of lithium-ion batteries has been one of the popular research subjects in recent years. Lithium-ion batteries can be used as the energy supply for industrial equipment, such as automated guided vehicles and battery electric vehicles. Predictive maintenance plays an important role in the application of smart manufacturing. This mechanism can provide different levels of pre-diagnosis for machines or components. Remaining useful life (RUL) prediction is crucial for the implementation of predictive maintenance strategies. RUL refers to the estimated useful life remaining before the machine cannot operate after a certain period of operation. This study develops a hybrid data science model based on empirical mode decomposition (EMD), grey relational analysis (GRA), and deep recurrent neural networks (RNN) for the RUL prediction of lithium-ion batteries. The EMD and GRA methods are first adopted to extract the characteristics of time series data. Then, various deep RNNs, including vanilla RNN, gated recurrent unit, long short-term memory network (LSTM), and bidirectional LSTM, are established to forecast state of health (SOH) and the RUL of lithium-ion batteries. Bayesian optimization is also used to find the best hyperparameters of deep RNNs. Experimental results with the lithium-ion batteries data of NASA Ames Prognostics Data Repository show that the proposed hybrid data science model can accurately predict the SOH and RUL of lithium-ion batteries. The LSTM network has the optimal results. The proposed hybrid data science model with multiple artificial intelligence-based technologies also demonstrates critical digital-technology enablers for digital transformation of smart manufacturing and transportation.  相似文献   

15.
The job scheduling problem (JSP) belongs to the well-known combinatorial optimization domain. After scheduling, if a machine maintenance issue affects the scheduled processing of jobs, the delivery of jobs must be delayed. In this paper, we have first proposed a Hybrid Evolutionary Algorithm (HyEA) for solving JSPs. We have then analyzed the effect of machine maintenance, whether preventive or breakdown, on the job scheduling. For the breakdown maintenance case, it is required to revise the algorithm to incorporate a rescheduling option after the breakdown occurs. The algorithm has been tested by solving a number of benchmark problems and thence comparing them with the existing algorithms. The experimental results provide a better understanding of job scheduling and the necessary rescheduling operations under process interruption.  相似文献   

16.
This paper introduces an innovative approach to the problem of rescheduling within manufacturing industry. An example of a manufacturing context that requires rescheduling capability is given (tyre production). The meaning of rescheduling, possible metrics for assessment of rescheduling and the advantages of applying the new techniques are reviewed. Of particular importance is the notion that the technology for providing rescheduling and explanation capabilities is to a large degree problem and context insensitive. The manner in which an original schedule has been created is irrelevant to the use of the technology described, allowing the advantages of the approach to be realized as an add-on facility to any existing scheduling system that fulfills a minimal set of requirements. These advantages are due to the use of a constraint based approach to new schedule creation used in tandem with dependency analysis techniques based on reason maintenance systems (de Kleer, 1986) and partial order backtracking (Ginsberg and McAllister, 1995; Spragg and Kelleher, 1996).  相似文献   

17.
This paper presents an industrial application of simulation-based optimization (SBO) in the scheduling and real-time rescheduling of a complex machining line in an automotive manufacturer in Sweden. Apart from generating schedules that are robust and adaptive, the scheduler must be able to carry out rescheduling in real time in order to cope with the system uncertainty effectively. A real-time scheduling system is therefore needed to support not only the work of the production planner but also the operators on the shop floor by re-generating feasible schedules when required. This paper describes such a real-time scheduling system, which is in essence a SBO system integrated with the shop floor database system. The scheduling system, called OPTIMISE scheduling system (OSS), uses real-time data from the production line and sends back expert suggestions directly to the operators through Personal Digital Assistants (PDAs). The user interface helps in generating new schedules and enables the users to easily monitor the production progress through visualization of production status and allows them to forecast and display target performance measures. Initial results from this industrial application have shown that such a novel scheduling system can help both in improving the line throughput efficiently and simultaneously supporting real-time decision making.  相似文献   

18.
Industry 4.0 describes a smart job shop as follows: it can meet individual customer requirements even if the requirements are changed at the last minute; its production control system (PCS) can rapidly respond to unexpected disruptions in production, and smart workpieces in the smart job shop can communicate with workstations to tell them what to do next. Present PCSs issue production instruction (PI) to workstation in a relatively long period such as a day, a week, even a month. And the PI is usually at process level, which means it is not sufficient to maintain smooth production flow at the operational level. Therefore, the existing PCSs cannot meet the requirements of Industry 4.0. On account of this, this article proposes a smart workpiece enabled production instruction service system for smart job shop under Industry 4.0. The PI service system in smart job shop consists of three parts such as PI sets generation, PI sets execution and PI sets update. In PI sets generation, the PI is viewed as a service requirement from the smart workpiece for the workstation, and then a PI service model is established to integrate machining actions with different kinds of manufacturing resources, processing place and processing time. Based on that, a method of converting the Gantt chart to PI sets is presented. In PI sets execution, a PI service unit is proposed for real-time issuing PIs to the radio-frequency identification (RFID) tags of smart workpieces. In PI sets update, the update of PI sets including unexecuted processes PI sets and current processes PI sets is discussed in detail. Finally, a small-scale smart job shop is taken as an example to illustrate the feasibility of the PI service system.  相似文献   

19.
Most semiconductor manufacturing systems (SMS) operate in a highly dynamic and unpredictable environment. The production rescheduling strategy addresses uncertainty and improves SMS performance. The rescheduling framework of SMS is presented as layered scheduling strategies with an optimization rescheduling decision mechanism. A fuzzy neural network (FNN) based rescheduling decision model is implemented which can rapidly choose an optimized rescheduling strategy to schedule the semiconductor wafer fabrication lines according to current system disturbances. The mapping between the input of FNN, such as disturbances, system state parameters, and the output of FNN, optimal rescheduling strategies, is constructed. An example of a semiconductor fabrication line in Shanghai is given. The experimental results demonstrate the effectiveness of proposed FNN-based rescheduling decision mechanism approach over the alternatives such as back-propagation neural network (BPNN) and multivariate regression (MR).  相似文献   

20.
Implementing efficient scheduling and dispatching policies is a critical means to gain competitiveness for modern semiconductor manufacturing systems. In contemporary global market, a successful semiconductor manufacturer has to excel in multiple performance indices, consequently qualified scheduling approaches should provide efficient and holistic management of wafer products, information and manufacturing resources and make adaptive decisions based on real-time processing status to reach an overall optimized system performance. To cope with this challenge, a timed extended object-oriented Petri nets (EOPNs) based multiple-objective scheduling and real-time dispatching approach is proposed in this paper. Four performance objectives pursued by semiconductor manufacturers are integrated into a priority-ranking algorithm that serves as the initial scheduling guidance, and then all wafer lots will be dynamically dispatched by the hybrid real-time dispatching control system. A set of simulation experiments validate the proposed multiple-objective scheduling and real-time dispatching algorithm may achieve satisfactory performances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号