首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The pneumatic system is frequently operated in the high air velocity region, which aggravates the power consumption and erosion of bend, and the intensive study of the particles motion characteristic on a horizontal-vertical pneumatic conveying in various curved 90° bends is necessary. This experimental study focuses on the particles motion characteristic of bend on the horizontal-vertical pneumatic conveying with oscillatory flow (generated by installing the oscillator) in terms of on pressure drop, powder consumption, the evolution of particle velocity and particle fluctuating intensity during flowing through bends. The results indicate that powder consumption can be reduced by using oscillatory flow, which is more obvious with a larger radius ratios bend. Meanwhile, the pressure drop proportion of bend is higher than average pressure drop of the system within the same distance. Otherwise, the total reduction particles velocity through bend is less while using oscillatory flow, which is more obvious using larger radius ratios bend. The particle velocity using oscillatory flow is higher than that of the conventional pneumatic conveying for the cases of larger radius ratios bend, and this effect is less evident while through a smaller radius bend.  相似文献   

2.
《Advanced Powder Technology》2020,31(6):2285-2292
To reduce the power consumption of a horizontal-vertical pneumatic conveying system, an oscillator is mounted with a 45° oblique plane through the pipe axis in this study. This experimental study focuses on the effect of oscillatory flow using the oscillator on the horizontal-vertical pneumatic conveying system in terms of the overall pressure drop of the system, power consumption, local pressure drop, and particle velocity. Compared with conventional pneumatic conveying (axial-flow), the pressure drop and power consumption can be reduced using the oscillatory flow in a lower air velocity range. Meanwhile, the particle axial velocity of the oscillatory flow is higher than that of the axial-flow near the bottom of pipe. This outcome indicates that the accelerating effect of oscillatory flow is obvious near the bottom of the pipe, and the particle vertical velocity of the oscillatory flow is positive, whereas the particle vertical velocity of the axial-flow is almost negative. This result shows that the particles of the oscillatory flow are suspended sufficiently, but the particles of the axial-flow have a tendency of deposition. Furthermore, the fluctuation intensity of the particle velocity of the oscillatory flow is higher than that of the axial-flow, especially near the bottom of the pipe.  相似文献   

3.
ABSTRACT

A numerical simulation for swirling and axial flow pneumatic conveying in a horizontal pipe was carried out with a Eulerian approach for the gas phase and a stochastic Lagrangian approach for particle phase, where particle-particle and particle-wall collisions were taken into consideration. The k-? turbulence model is used to characterize the time and length scales of the gas-phase turbulence. Models are proposed for predicting the particle source and additional pressure loss. The numerical results are presented for polyethylene pellets of 3.1 mm diameter conveyed through a pipeline of 13 m in length with an inner diameter of 80 mm, solid mass flow rate was 0.084 kg/s, and gas velocity was varied from 10 m/s to 18 m/s. The particle flow patterns, the particle concentration and the particle velocity, and additional pressure loss were obtained. It is found that the particle velocity and concentration has almost same value along flow direction in swirling flow pneumatic conveying. The profile of particle concentration for swirling flow pneumatic conveying exhibits symmetric distribution towards the centerline and the higher particle concentration appears in neighbor of wall in the acceleration region. At downstream, the uniform profile of particle concentration is observed. The particle velocity profile, on the other hand, is uniform for both swirling and axial flow pneumatic conveying. A comparison of the calculations with the measured data shows a good agreement within an average error of less than 15 percent.  相似文献   

4.
A numerical simulation for swirling and axial flow pneumatic conveying in a horizontal pipe was carried out with a Eulerian approach for the gas phase and a stochastic Lagrangian approach for particle phase, where particle-particle and particle-wall collisions were taken into consideration. The k-ε turbulence model is used to characterize the time and length scales of the gas-phase turbulence. Models are proposed for predicting the particle source and additional pressure loss. The numerical results are presented for polyethylene pellets of 3.1 mm diameter conveyed through a pipeline of 13 m in length with an inner diameter of 80 mm, solid mass flow rate was 0.084 kg/s, and gas velocity was varied from 10 m/s to 18 m/s. The particle flow patterns, the particle concentration and the particle velocity, and additional pressure loss were obtained. It is found that the particle velocity and concentration has almost same value along flow direction in swirling flow pneumatic conveying. The profile of particle concentration for swirling flow pneumatic conveying exhibits symmetric distribution towards the centerline and the higher particle concentration appears in neighbor of wall in the acceleration region. At downstream, the uniform profile of particle concentration is observed. The particle velocity profile, on the other hand, is uniform for both swirling and axial flow pneumatic conveying. A comparison of the calculations with the measured data shows a good agreement within an average error of less than 15 percent.  相似文献   

5.
In order to prevent flow blockage phenomenon and to reduce the impact of particles on the wall of the bend, an experimental study of the swirling flow pneumatic conveying system with a horizontal curved pipe was carried out in this work. The experiment was performed in a 90-deg pipe bend with pipe diameter 75 mm and centerline curvature ratio 12. The straight pipes with 75 mm inside diameter at the upstream and downstream of the bend were 1.3 m and 4.0 m in lengths, respectively. The initial swirl number was varied from 0.22 to 0.60, the mean air velocity from 10 to 20 m/s, and the solid mass flow rate from 0.07 to 0.68 kg/s. It is found that in the lower air velocity range, the overall pressure drop of the swirling flow pneumatic conveying shows a lower tendency than that of axial flow pneumatic conveying. The minimum air velocities can be decreased by using the swirling flow pneumatic conveying. From the visualization of particle flow patterns, the impact of particles on the wall of the bend can be reduced using the swirling flow.  相似文献   

6.
The pneumatic system is frequently operated in the high air velocity region, which aggravates the power consumption and erosion of bend, and the dynamic analysis of particles in bends with different radius of curvature in a horizontal-vertical pneumatic conveying system is necessary. This experimental study focuses on the particle motion characteristic of bend on the horizontal-vertical pneumatic conveying in terms of on pressure drop, particle velocity, power spectral characteristics of particle fluctuation velocity, the energy distribution of the proper orthogonal decomposition (POD) modes, time coefficients of POD, and spatial mode of POD mode during flowing through bends. The results indicate that the particle rope is the large-scale motion of particles containing high energy, which dominates the motion of particles in the bend, and the suppression of small-scale motion leads to the low pressure drop in a large radius ratio of the bend.  相似文献   

7.
ABSTRACT

In order to prevent flow blockage phenomenon and to reduce the impact of particles on the wall of the bend, an experimental study of the swirling flow pneumatic conveying system with a horizontal curved pipe was carried out in this work. The experiment was performed in a 90-deg pipe bend with pipe diameter 75 mm and centerline curvature ratio 12. The straight pipes with 75 mm inside diameter at the upstream and downstream of the bend were 1.3 m and 4.0 m in lengths, respectively. The initial swirl number was varied from 0.22 to 0.60, the mean air velocity from 10 to 20 m/s, and the solid mass flow rate from 0.07 to 0.68 kg/s. It is found that in the lower air velocity range, the overall pressure drop of the swirling flow pneumatic conveying shows a lower tendency than that of axial flow pneumatic conveying. The minimum air velocities can be decreased by using the swirling flow pneumatic conveying. From the visualization of particle flow patterns, the impact of particles on the wall of the bend can be reduced using the swirling flow.  相似文献   

8.
Estimation of separation or minor pressure losses for pipe fittings of a pneumatic conveying system at design stage is critical as much as determination of frictional pressure losses through it. The flow in many pneumatic conveying systems is a two-phase flow; it is so complex and difficult to be investigated by experimental techniques. The static pressure recovery and the minor loss coefficient through an axis-symmetric, circular cross-section, sudden-expansion fitting of a horizontal pneumatic conveying line with air–solid particle flow are analytically studied. The theoretical models proposed in the literature are scarce, and do not confirm the experimental studies. The well-known homogeneous and separated flow models proposed in the literature are initially applied to the case by means of mass and momentum conservation laws. The predictions of both the models on the pressure recovery were compared with the experimental and the numerical data in the literature and a bad agreement was observed between them; therefore, a new original analytical model is proposed by the present study. The new model is called as the slip flow model, which takes into account the slip velocity between gas and solid phases evaluated by coupling the well-known separated flow model with the empirical slip ratio predictions in the literature. The predictions of the proposed slip flow model on both the pressure recovery and minor loss coefficient are found in good agreement with the corresponding data in the literature.  相似文献   

9.
To further elucidate the mechanism of energy-conserving conveying in horizontal pneumatic conveying with the dune model, the high-speed particle image velocimetry is applied to measure particle fluctuation velocity near the minimum conveying velocity of the conventional pneumatic conveying. This study focuses on the effect of mounting dune models on the horizontal pneumatic conveying in terms of power spectrum, autocorrelation coefficients, two-point correlation coefficients, fluctuation intensity of particle velocity, skewness factor, and probability density function. It is found that the power spectrum peaks with the dune model are larger than those of the nondune system, suggesting the acceleration and suspending efficiency of the dune model, especially dune models mounted at the bottom of the pipe. Meanwhile, the profiles of particle fluctuation velocity intensity indicate that the large particle fluctuating energy is generated due to mounting the dune model so that the particles are more easily accelerated and suspended. This is one of the important reasons why the mounted dune model results in a low pressure drop and low minimum conveying velocity. Based on the distribution of skewness factor and probability density function, it is found that the particle fluctuation velocities of all cases follow the Gaussian distribution in the lower and middle parts of the pipe. The particle fluctuation velocities in the case of the dune models mounted at the bottom of the pipe obey the Gaussian-type fluctuation more.  相似文献   

10.
Pneumatic conveying is widely used for transporting bulk solids in chemical, process and agricultural industries. It is environmentally friendly, flexible and can be fully automated. But it can also involve high power consumption, wear, abrasion, blockage and particle degradation. Hence understanding the physics can help to optimise design and operation. Conveying in a horizontal pipe involves complex multiphase flows, potentially with lean and dense phase regions, stationary particles and blockage.The Distinct Element Method (DEM) is a powerful tool to study granular dynamics. It models interactions at the particle level and reproduces the assembly physics. This paper presents a 3D DEM model to predict pressure drop, flowrate and flow patterns in pneumatic conveying. The inter-particle forces are modelled using the spring-dashpot-slider analogy. A novel gas flow model is developed. The pipe is divided into sections. In each section a lean and dense region is determined on a voidage criterion based on particle positions. Given the pressure at the boundaries, the fluid flow is determined assuming steady state conditions. This uses the Ergun equation for the flow through the dense phase and the equations of Wen and Yu for modified single spheres and wall resistance for the lean phase. It uses an iterative algorithm adjusting the fluid flowrate so that the pressure in each section is the same in the dense phase and lean phase and maintaining the boundary pressures. Once the fluid flow profile has been calculated the fluid drag on each particle can be determined. The results compare well with experimental data relating pressure gradient and solid and gas flowrates from Molerus (1993), Molerus (1996). Flow patterns for all the flow regimes, fully suspended flow, strand flow, slug flow, and conveying over stationary layer are observed.  相似文献   

11.
A differential equation of motion for gas-flour two-phase flow in a vertical pipe was first derived based on the momentum conservation and by adopting two empirical expressions for the velocity ratio of flour to gas and frictional coefficient between flour and pipe wall, and then a pressure drop model for dilute positive pneumatic conveying of flour through a vertical pipeline was developed by employing the continuity and state equations for gas. The conveying tests were conducted on a positive pneumatic conveying system of flour in a flour mill. Under each of the six different flow conditions, the conveying parameters, such as the flour and gas mass flow rates and the pressure drop between two selected cross sections on the vertical pipeline were measured. The pressure drop between the two selected cross sections was evaluated using the pressure drop model for each of the six flow conditions. The calculated values of pressure drop agree well with the measured data, and it is demonstrated that the model is applicable to vertical positive pneumatic conveying systems of flour.  相似文献   

12.
There have been numerous correlations proposed for determining a solids friction factor ( λs ) for fully suspended (dilute phase) pneumatic conveying. Currently, there are no equivalent correlations that predict λs in nonsuspension dense-phase flows. In dense-phase conveying there are two basic modes of flow: plug/slug flow, which is predominantly based on granular products, and fluidized dense-phase flow, which is more suited to fine powders exhibiting good air retention capabilities. In plug/slug type flow, the stresses between the moving plug of material and the pipe wall dominate the solid-phase frictional losses. In fluidized dense-phase flow the frictional losses are characterized as a mixture of particle-wall and particle-particle losses but are heavily influenced by the gas-solid interactions. In this paper, a series of calculations were performed on experimental data in order to estimate λs for four types of material conveyed in the fluidized dense-phase flow regime. The solids frictional factors were found to be relatively independent of particle properties for varying air and solid mass flow rates and pressure drops. The resultant pressure drop from the empirical model showed good agreement with the experimental data.  相似文献   

13.
A major challenge facing the designers of pneumatic transportation systems is how to scale up reliably based on the results from pilot-scale test facilities. Further, even if dense phase flow condition prevails at the start of the conveying system, it may be a dilute phase flow condition at the end of the pipeline. Hence, any scaling-up technique should be able to address the dynamic change of flow condition along the pipeline. The scaling-up technique presented here using the pressure drop prediction models based on modified Darcy-Weisbach equation successfully addresses these dynamic changes. It has been shown that the pressure drop coefficient 'K,' as defined by the models, is independent of the pipe diameter. Further, in the case of vertical conveying, 'K' has been shown to be independent of particle size distribution for a given material. The predicted pressure values were found to be in reasonably good agreement with the experimental results varying from 3.5% to 19.9%.  相似文献   

14.
密相气力输送系统中几种气量控制方式的比较   总被引:1,自引:0,他引:1  
从调压范围、压力特性和流量特性方面介绍了减压阀的主要性能,讨论了气力输送交流中减压阀的选择和调节,分析了密相气力输送系统中各种气量控制方法,对其各自的优缺点进行了详细讨论,重点分析减压阀及减压阀与拉法尔联合气量控制系统的优、缺点,表明可调式拉法尔管是今后气力输送气量控制发展的方向。  相似文献   

15.
Single-plug conveying systems have the advantage of being easy to handle and highly controllable. In industry, however, multi-plug conveying systems are the most common choice due to their high transporting capacity. In order to study a multi-plug industrial conveying system, the system parameters were varied along with the materials being conveyed. The responses obtained were compared to the single-plug laboratory system, noting differences and similarities. The pneumatic conveying system at an industrial facility consisted of a 0.01 m Schedule 10 aluminum pipe, approximately 100 m long. To measure the pressure at different points along the system, a total of seven transducers were installed, four air transducers and three flush transducers. This study also used a high-speed video camera to view the plugs as they passed through the transparent viewing port, providing more detailed information on the multi-plug conveying process. Three materials were tested at different superficial air velocities and solid mass flows. In each experiment all transducers took data with a sample rate of 1,000 Hz, giving a highly detailed overview of the conveying process. The analysis included plug velocity and plug size with respect to the superficial air velocity. The Mi model for plug-flow pressure drops was found to yield agreement with the data within ±25%. For this type of industrial operation, this agreement is considered acceptable. The visual observations recorded with the camera showed that there were conditions of stable plug formation as well as varying degrees of plug stability and integrity depending on the operational conditions.  相似文献   

16.
The aim of this paper is to investigate into flow mechanism with the help of pressure signal fluctuations analysis and modeling solids friction in case of solids–gas flows for fluidized-dense-phase pneumatic conveying of fine powders. Materials conveyed include fly ash (median particle diameter 30 µm; particle density 2300 kg m?3; loose-poured bulk density 700 kg m?3) and white powder (median particle diameter 55 µm; particle density 1600 kg m?3; loose-poured bulk density 620 kg m?3). These were conveyed in different flow regimes varying from fluidized-dense-to-dilute phase. To obtain information on the nature of flow inside pipeline, static pressure signals were studied using technique of Shannon entropy. Increase in the values of Shannon entropy along the flow direction through the straight-pipe sections were found for both the powders. However, drop occurred in the Shannon entropy values after the flow through bend(s). Change in slope of straight-pipe pneumatic conveying characteristics along the flow direction is another factor which provided indication regarding change in flow mechanisms along the flow. A new technique for modeling solids friction factor has been developed using a solids volumetric concentration and ratio of particle terminal settling velocity to superficial air velocity by replacing the conventional use of solids loading ratio and Froude number, respectively. The new model format has shown promise for predictions under diameter scale-up conditions.  相似文献   

17.
Pneumatic conveying is widely used in industries handling large amount of granular materials to transport the solid particles; however, the process is energy intensive as an instability of flow sets in the transportation line even in the dilute regime, causing large fluctuations in the line pressure drop, the reason of which is not clearly understood. Here, we investigate, both by experiments and by using numerical simulations, the instability transition regimes and identify the reasons of the fluctuations observed in the line pressure drop in a horizontal pneumatic transport system operating at near-saltation conditions. It is observed that the increase in the pressure drop (immediately after the saltation) is accompanied by the formation of distinct dunes. It is also observed that the line pressure drop depends on the axial location of the dune and shows large fluctuations in the regime where the dunes are unstable. Results obtained from the numerical simulations suggest that the increase in the line pressure drop in the presence of dunes is essentially due to the shear stresses at the dune surface which are larger than that for the flows in clean pipe.  相似文献   

18.
Slug-flow pneumatic conveying is a full-bore mode of flow within the dense-phase flow regime where bulk materials are transported in the form of slugs at conveying speeds below saltation velocity. The mechanism of slug-flow pneumatic conveying consists of the particles being picked up from the stationary bed in front of a moving slug while the same amount of material is deposited behind the slug. Stress field modeling of the material slug is the first step in developing a prediction model for the pressure drop along a pneumatic conveying line. However, a reliable prediction strongly relies on an accurate assessment of several factors, including the particle properties, pipeline dimensions, and operating conditions. So far, the particle diameter has always been one of the crucial parameters, which is not desirable in regards to the limitations it imposes on the choice of bulk materials. This article focuses on one parameter, the stress transmission coefficient kw, which relates the lateral wall stress within a slug of material to the axial stress. To date, this parameter could not be measured directly in an aerated material bed and had to be estimated. Inaccuracies within the prediction were therefore unavoidable. A newly designed test chamber now enables the measurement of the lateral and axial stresses within a slug, which leads directly to this stress transmission coefficient. This article outlines the design of the test apparatus and reports on the experimental results. For the two materials tested, an exponential correlation between the pressure on top of the slug (frontal stress) and the stress transmission coefficient was obtained. Calculating the wall friction coefficient leads to a constant value above a certain material-specific air velocity.  相似文献   

19.
Slug-flow pneumatic conveying is a full-bore mode of flow within the dense-phase flow regime where bulk materials are transported in the form of slugs at conveying speeds below saltation velocity. The mechanism of slug-flow pneumatic conveying consists of the particles being picked up from the stationary bed in front of a moving slug while the same amount of material is deposited behind the slug. Stress field modeling of the material slug is the first step in developing a prediction model for the pressure drop along a pneumatic conveying line. However, a reliable prediction strongly relies on an accurate assessment of several factors, including the particle properties, pipeline dimensions, and operating conditions. So far, the particle diameter has always been one of the crucial parameters, which is not desirable in regards to the limitations it imposes on the choice of bulk materials. This article focuses on one parameter, the stress transmission coefficient kw, which relates the lateral wall stress within a slug of material to the axial stress. To date, this parameter could not be measured directly in an aerated material bed and had to be estimated. Inaccuracies within the prediction were therefore unavoidable. A newly designed test chamber now enables the measurement of the lateral and axial stresses within a slug, which leads directly to this stress transmission coefficient. This article outlines the design of the test apparatus and reports on the experimental results. For the two materials tested, an exponential correlation between the pressure on top of the slug (frontal stress) and the stress transmission coefficient was obtained. Calculating the wall friction coefficient leads to a constant value above a certain material-specific air velocity.  相似文献   

20.
This article presents results from an investigation into the pneumatic conveying characteristics (PCC) for horizontal straight-pipe sections for fluidized dense-phase pneumatic conveying of powders. Two fine powders (median particle diameter: 30 and 55 µm; particle density: 2300 and 1600 kg m?3; loose-poured bulk density: 700 and 620 kg m?3) were conveyed through 69 mm I.D. × 168 m, 69 mm I.D. × 148 m, 105 mm I.D. × 168 m and 69 mm I.D. × 554 m pipelines for a wide range of air and solids flow rates. Straight-pipe pneumatic conveying characteristics obtained from two sets of pressure tappings installed at two different locations in each pipeline have shown that the trends and relatively magnitudes of the pressure drops can be significantly different depending on product, pipeline diameter and length and location of tapping point in the pipeline (indicating a possible change in transport mechanism along the flow direction). The corresponding models for solids friction factor were also found to be different. There was no distinct pressure minimum curve (PMC) in any of the straight-pipe PCC, indicating a gradual change in flow transition (change in flow mechanism from dense to dilute phase). For total pipeline conveying characteristics, the shapes of the PCC curves and the location of the PMC were found to be significantly influenced by pipeline layout (e.g., location and number of bends) and not entirely by the dense-to-dilute-phase transition of flow mechanism. Seven existing models and a new empirically developed model for PMC for straight pipes have been evaluated against experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号