首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Fracture toughness, four-point bending strength of transparent spinel, Y2O3 and YAG ceramics in function of temperature (from room temperature up to 1500° C) were measured. Creep resistance at 1500–1550° C was studied too. Grain size distribution was determined on polished and etched surfaces of samples. Fracture surfaces after tests were examined by scanning electron microscopy. The obtained results showed that: in the case of spinel ceramics fracture toughness and strength decreased from 20 to 800° C, increased from 800 to 1200° C and decreased at higher temperature; in the case of Y2O3 ceramics they increased from 400 to 800° C, and next kept constant up to 1500° C; in the case of YAG ceramics they kept constant from 20 to 1200° C and then decreased. The creep strain rate was measured for spinel and YAG but not for Y2O3 ceramics which appeared creep resistant. The hypotheses concerning toughening and creep mechanisms were proposed.  相似文献   

2.
Transparent nanophase TiO2 thin films on soda lime glass were prepared from titanium tetraisopropoxide (TTIP) by a sol-gel dip-coating method. The TiO2 films had amorphous phase up to 400°C and anatase phase at 500°C. The amorphous TiO2 films obtained at 300–400°C showed considerable photoactivity for the degradation of formic acid. The photoactivity of the TiO2 films was enhanced with increasing calcination temperature from 300° to 500°C. The crystallinity of the anatase films at 500°C was improved with increasing calcination time up to 2 h and reduced with a further increase in calcination time to 4 h due to the significant formation of sodium titanate phase as a result of sodium diffusion. The four-time-dipping anatase films at 500°C exhibited the greatest photoactivity at the calcination time of 2 h. Sodium diffusion into TiO2 films was retarded by a SiO2 underlayer of 50 nm in thickness.  相似文献   

3.
《应用陶瓷进展》2013,112(3):149-154
Abstract

The aim of the present work is to prepare, characterise and assess MgO–Al2O3–SiO2 refractory ceramics; namely, spinel, mullite and cordierite from chemically recycled precipitates. These precipitates include pure and fine magnesium and aluminium hydroxides as well as water treated fumed silica. Corresponding batches of the aimed oxide ceramics were coprecipitated from these precipitates and subsequently processed up to firing using the proper techniques. The processed bodies were investigated for their chemical and phase composition as well as morphology, microstructure and physical properties. According to the results of these investigations, the processed ceramics could be recommended for the adequate applications. It is concluded that dense, direct bonded and highly refractory spinel and mullite–corundum bodies could be obtained after firing their coprecipitated batches up to 1700°C. On the other side, dense, porous and refractory cordierite–spinel bodies could be processed from its batch after firing up to 1350°C. All of these bodies are refractory oxide ceramics with a very wide range of thermo-chemical, physical and mechanical applications.  相似文献   

4.
《Ceramics International》2023,49(12):20406-20418
Herein, we present the structural evolution of polymer-derived SiOC ceramics with the pyrolysis temperature and the corresponding change in their microwave dielectric properties. The structure of the SiOC ceramics pyrolyzed at a temperature lower than 1200 °C is amorphous, and the corresponding microwave complex permittivity is pretty low; thus, the ceramics exhibit wave transmission properties. The Structural arrangement of free carbon in the SiOC ceramics mainly happens in the temperature range of 1200 °C-1300 °C due to the separation from the Si–O–C network and graphitization, while the structural arrangement of the Si-based matrix mainly occurs in the range of 1300 °C-1400 °C owing to the separation of SiC4 from the Si–O–C network to form nanocrystalline SiC. In pyrolysis temperature range of 1200 °C-1400 °C, the microwave permittivity of SiOC shows negligible change. At a pyrolysis temperature exceeding 1400 °C, the carbothermal reaction of free carbon and the Si–O backbone becomes significant, leading to the formation of crystalline SiC. The as-formed SiC and residual defective carbon improve the polarization loss of SiOC ceramics. In this case, the SiOC ceramics show significantly increased complex permittivity, exhibiting electromagnetic absorption characteristics. These characteristics promote the application of polymer-derived SiOC ceramics to high-temperature electromagnetic absorption materials.  相似文献   

5.
In this study, calcium lanthanum sulfide (CaLa2S4, CLS) ceramics with the cubic thorium phosphate structure were sintered at different temperatures by field‐assisted sintering technique (FAST). Densification behavior and grain growth kinetics were studied through densification curves and microstructural characterizations. It was determined that the densification in the 850°C‐950°C temperature range was controlled by a mixture of lattice or grain‐boundary diffusion, and grain‐boundary sliding. It was revealed that grain‐boundary diffusion was the main mechanism controlling the grain growth between 950°C and 1100°C. The infrared (IR) transmittance of the FAST‐sintered CLS ceramics was measured and observed to reach a maximum of 48.1% at 9.2 μm in ceramic sintered at 1000°C. In addition, it was observed that the hardness of the CLS ceramics first increased with increasing temperature due to densification, and then decreased due to a decrease in dislocations associated with grain growth.  相似文献   

6.
We prepared chemically stoichiometric, S‐poor and S‐rich Ge–Ga–S glasses and annealed them at a temperature that was 20°C higher than its respective glass transition temperature. We aimed at tuning the formation of the different crystals in chalcogenide glass‐ceramics. Through systematic characterization of the structure using X‐ray diffraction and Raman scattering spectra, we found that, GeS2 and GeS crystals only can be created in S‐rich and S‐poor glass‐ceramics, respectively, while all GeS, Ga2S3, and GeS2 crystals exist in chemically stoichiometric glass‐ceramics. Moreover, we demonstrated the homogeneous distribution of the crystals can be formed in the S‐rich glass‐ceramics from the surface to the interior via composition designing. The present approach blazes a new path to control the growth of the different crystals in chalcogenide glass‐ceramics.  相似文献   

7.
In this study, fine Y2O3–MgO composite nanopowders were synthesized via the sol–gel method. Dense Y2O3–MgO composite ceramics were fabricated by pre-sintering the green body in air at different temperatures for 1 h and then subjecting the sintered bodies to hot isostatic pressing at 1300°C for 1 h. The effects of pre-sintering temperature on the microstructural, mechanical, and optical properties of the resulting ceramics were studied. The average grain size of the ceramics was increased, whereas their hardness and fracture toughness were decreased with increasing pre-sintering temperature. A maximum fracture toughness of 1.42 MPa·m1/2 and Vickers hardness of 10.4 GPa were obtained. The average flexural strength of the ceramics was 411 MPa at room temperature and reached 361 MPa at 600°C. A transmittance of 84% in the 3–5 µm region was obtained when the composite ceramics were sintered at 1400°C. Moreover, a transmittance of 76% in the 3–5 µm region was obtained at 500°C.  相似文献   

8.
Mechanical properties of ZrB2–SiC and ZrB2–ZrSi2–SiC ceramics in the temperature range from 20 to 1400 °C were studied. It was found that the introduction of zirconium silicide resulted in pore-free ceramics having bending strengths of 400–500 MPa over a wide range of boride–carbide compositions. Zirconium silicide additive did not lead to significant strength and hardness changes at low temperature, but essentially increased Weibull modulus, and, therefore, the reliability of the ceramics. However, zirconium silicide additions resulted in noticeably reduced bending strength in ZrB2–SiC based composites at 1400 °C.  相似文献   

9.
Mullite–nickel nanocomposite fibers with Ni nanoparticles of controllable size, dispersion, and consequent magnetic properties were fabricated using sol–gel/electrospinning method, followed by thermal reduction. The fibers were electrospun from an aqueous solution containing sol–gel mullite precursor and nickel nitrate. These fibers were then heat treated in the reducing atmosphere between 550°C and 750°C to achieve fine‐dis persed metallic Ni nanoparticles (NPs). After the Ni2+ was reduced to Ni NPs at 750°C for 10 h, the fibers were then directly transformed to the mullite fibers at 1000°C without the undesirable intermediate spinel phase. In many high‐temperature applications, mullite is the desired phase than spinel. If not fully reduced, the Ni2+ cations induce early precipitation of spinel phase before mullite can be formed. This spinel phase was a solid solution between Al2NiO4 and Al‐Si spinels, which later reacted with the residual silica and formed a mixture of mullite and spinel at 1400°C. The formation of spinel phase was suppressed or fully eliminated with chemically reducing Ni2+ to metal NPs. The average size of nickel NPs within the fibers was ~20 nm, insensitive of the Ni concentration and reducing temperature. However, the Ni NPs on the fiber surface grew as large as ~80 nm due to fast surface diffusion. The magnetic nanocomposites exhibited ferromagnetism with saturation magnetization (Ms) close to pure nickel of the same nominal weight, but coercivity (Hc) much smaller than the bulk nickel, indicating the nature of bimodal magnetic nanoparticle distributions. The majority of small Ni NPs (~20 nm) within the fibers exhibited superparamagnetism, while the minor portion of relatively large NPs (50–80 nm) showed ferromagnetism.  相似文献   

10.
Nickel catalysts supported on rice husk ash–alumina (Ni/RHA–Al2O3) were prepared by an incipient wetness impregnation method. Characterization included TGA, DSC, TPR, XRD, and BET. Results show that the decomposition of the nickel compound to nickel oxide was complete above 500 °C. The TPR analysis revealed a strong interaction between nickel and support, and a decrease in reducibility of NiO with increasing calcination temperature. The XRD analysis of Ni/RHA–Al2O3 catalyst precursors demonstrated the presence of spinel. It also showed that the size of crystallites in the supported NiO first decreased with increase in calcination temperature up to 700 °C, and then increased due to phase transformation of nickel oxide to spinel. The pores are mesopores and their meshy surface structure was not affected by calcination temperature in the range investigated. The catalytic activity was tested by CO2 hydrogenation with an H2/CO2 ratio of 4/1 at 500 °C. The CO2 conversion and CH4 yield for CO2 hydrogenation over 15 wt% Ni/RHA–Al2O3 catalyst were almost independent of calcination and reduction temperatures. Copyright © 2004 Society of Chemical Industry  相似文献   

11.
Three‐phase ceramic composites constituted from equal volume fractions of α‐Al2O3, MgAl2O4 spinel, and cubic 8 mol% Y2O3‐stabilized ZrO2 (8YSZ) were flash‐sintered under the influence of DC electric fields. The temperature for the onset of rapid densification (flash sintering) was measured using a constant heating rate at fields of 50‐500 V/cm. The experiments were carried out by heating the furnace at a constant rate. Flash sintering occurred at a furnace temperature of 1350°C at a field of 100 V/cm, which dropped to 1150°C at a field of 500 V/cm. The sintered densities ranged from 90% to 96%. Higher electric fields inhibited grain growth due to the lowering of the flash temperature and an accelerated sintering rate. During flash sintering, alumina reacted with the spinel phase to form a high‐alumina spinel solid solution, identified by electron dispersive spectroscopy and from a decrease in the spinel lattice parameter as measured by X‐ray diffraction. It is proposed that the solid solution reaction was promoted by a combination of electrical field and Joule heating.  相似文献   

12.
This paper reports the results of synthesis and sintering studies as well as dielectric properties of Pb(Fe1/2Ta1/2)O3 (PFT) relaxor ferroelectric ceramics. Influence of doping with MnO2 and Co3O4 (0.1–1 mol%) on resistivity and dielectric characteristics were investigated. The dielectric permittivity and dissipation factor of the ceramics were determined as a function of temperature in the range from −55 to 500 °C at frequencies 10 Hz to 1 MHz. DC resistivities of the samples were measured in the temperature range 20–500 °C. Two maxima in dielectric permittivity versus temperature curves were observed, dependent on frequency and the content of dopants. The investigated PFT ceramics were characterized by high dielectric permittivity of 3500–6700 at the transition temperature and 900–17,000 at the second maxima.  相似文献   

13.
《Ceramics International》2022,48(2):2330-2336
Porous forsterite-spinel-periclase ceramics with low thermal conductivity were synthesized via a transient liquid phase diffusion process by using pre-synthesized pellets and fused magnesia powder. The effects of sintering temperature on the pore formation, phase composition, sintering behavior, and properties of the resulting porous ceramics were investigated. The pre-synthesized pellets had a porous structure and contained a large amount of cordierite and enstatite. During the sintering progress, the pellets were converted into a transient liquid phase, which diffused into the solid MgO matrix. The liquid phase diffusion reaction promoted forsterite and spinel formation, which resulted in the in-situ formation of large pores. At elevated temperatures, the liquid phase disappeared and a large number of well-developed grains were simultaneously precipitated from the liquid phase. Porous ceramics with thermal conductivities of 0.42–0.48 W/(m·K) and refractoriness under load values of 1588 °C and 1624 °C were obtained after sintering at 1600 °C for 3 h.  相似文献   

14.
Al2O3-based green ceramics are prepared by isostatic cold pressing technology. The prepared green ceramics are pre-sintered at the temperature from room temperature to 1100°C, and then Al2O3 ceramics are prepared by laser sintering. The effects of pre-sintering temperatures and laser parameters on mechanical properties and the sintering quality are analyzed. The results show that good crystallinity of Al2O3 particles is obtained at a higher pre-sintering temperature. The flexural strength and density of green ceramics increase with the temperature of heat treatment. The flexural strength decreases slightly at ∼200°C due to the paraffin binder disintegration. The pre-sintering temperature and laser processing parameters have a significant influence on the sintering quality. With the increase of laser power and laser frequency, dynamic grain growth occurs, and then grains are refined. The majority of plate-like grains are transformed into long cylindrical-like grains in the severe densification process. However, porous flocculation microstructures are generated on the samples pre-sintered at 1100°C after laser sintering, which is due to the material gasification in atmospheric environment during sintering by infrared laser. More uniform microstructure and better sintering quality of samples pre-sintered at 500°C can be achieved after laser sintering with a relatively narrower grain size distribution.  相似文献   

15.
Pure tin oxide (SnO2) ceramics is well known for its bad sinterability, more precisely for the difficulty to densify without additives by conventional pressureless sintering. This is related to the fact that the sintering mechanisms in pure tin oxide ceramics are non-densifying (surface diffusion at low temperature and evaporation-condensation at high temperature). On the other hand, for the same reason, pure tin oxide ceramics is a very unusual model system that can be used to demonstrate the effects of microstructural changes on effective properties without the otherwise dominating effect of changes in porosity. In this paper we show that pure tin oxide ceramics uniaxially pressed at 50 MPa, pre-sintered at 500 °C and re-sintered at 1000, 1200 and 1400 °C exhibit relative Young’s modulus increases of 30, 70 and 120 % while the porosity remains essentially constant at a value of 51.6 ± 0.7 %.  相似文献   

16.
The thermal conductivity, thermal expansion, Youngs Modulus, flexural strength, and brittle–plastic deformation transition temperature were determined for HfB2, HfC0·98, HfC0·67, and HfN0·92 ceramics. The oxidation resistance of ceramics in the ZrB2–ZrC–SiC system was characterized as a function of composition and processing technique. The thermal conductivity of HfB2 exceeded that of the other materials by a factor of 5 at room temperature and by a factor of 2·5 at 820°C. The transition temperature of HfC exhibited a strong stoichiometry dependence, decreasing from 2200°C for HfC0·98 to 1100°C for HfC0·67 ceramics. The transition temperature of HfB2 was 1100°C. The ZrB2/ZrC/SiC ceramics were prepared from mixtures of Zr (or ZrC), SiB4, and C using displacement reactions. The ceramics with ZrB2 as a predominant phase had high oxidation resistance up to 1500°C compared to pure ZrB2 and ZrC ceramics. The ceramics with ZrB2/SiC molar ratio of 2 (25 vol% SiC), containing little or no ZrC, were the most oxidation resistant.  相似文献   

17.
A kind of chemical vapor infiltration (CVI) Si3N4–BN–SiCN composite ceramic with excellent electromagnetic wave (EMW) absorbing properties is obtained by CVI BN interface and SiCN matrix on porous Si3N4 ceramics, and then annealed at high temperatures (1200°C‐1500°C) in N2 atmosphere. The crystallization behavior, EMW absorbing mechanism and mechanical properties of the composite ceramics have been investigated. Results showed CVI SiCN ceramics with BN interface were crystallized in the form of nanograins, and the crystallization temperature was lower. Moreover, both EMW absorbing properties and mechanical properties of CVI Si3N4–BN–SiCN composite ceramics firstly increased and then decreased with the increase in annealing temperature due to the influence of BN interface on the microstructure and phase composition of the composite ceramics. The minimum reflection coefficient (RC) and maximum effective absorption bandwidth (EAB) of the composite ceramics annealed at 1300°C were ?47.05 dB at the thickness of 4.05 mm and 3.70 GHz at the thickness of 3.65 mm, respectively. The flexural strength and fracture toughness of the composite ceramics annealed at 1300°C were 94 MPa and 1.78 MPa/m1/2, respectively.  相似文献   

18.
Pure and 1.0 mol% La2O3, ZnO, and Cr2O3‐modified 0.675BiFeO3–0.325BaTiO3 (BF–BT) multiferroic ceramics were prepared and comparatively investigated. For pure and La‐, Zn‐, and Cr‐modified BF–BT, the average grain size is 415, 325, 580, and 395 nm, and the maximum dielectric constant temperature is 460°C, 430°C, 465°C, and 445°C, respectively. All additives weaken the ferroelectricity slightly. Zn‐ and Cr‐modifications dramatically enhance the room‐temperature magnetic properties, whereas La‐modification has almost no effect on magnetic property. Especially, the Cr‐modified BF–BT ceramics show switchable polarization and magnetization of 4.9 μC/cm2 and 0.27 emu/g at room temperature, the magnetoelectric coupling is confirmed by the magnetization‐magnetic field curves measured on ceramics before and after electric poling. The mechanism responsible for the different effects of additive on microstructures and properties are discussed based on additive‐induced point defect and second phase as well as diffusion‐induced substitution. These results not only provide a promising room‐temperature multiferroic material candidate, but also are helpful to design new multiferroic materials with enhanced properties.  相似文献   

19.
By utilising soaked millet as a shrinkable pore-forming agent, porous silicon carbide-alumina (SiC-Al2O3) ceramics were prepared via gelcasting. The fabrication of SiC-Al2O3 ceramics based on oxidised and unoxidised coarse-grained SiC was also studied. The water swelling, drying shrinkage, and low-temperature carbonisation of the millet were investigated. We found that the shrinkage of the soaked millet was greater than that of gel body during drying, which left large gaps that prevented shrinkage stresses from destroying the gel body. Low-temperature carbonisation of the millet should be performed slowly at 220–240?°C because its expansion rate increases to 45% at 250?°C, resulting in the cracking of samples. At a constant sintering temperature, the flexural strength of the SiC-Al2O3 ceramics prepared with SiC powders oxidised at 1000?°C was the highest, indicating that oxidised powders can successfully decrease the required sintering temperature and improve the flexural strength of composite ceramics. Based on our optimised process, porous SiC-Al2O3 ceramics were sintered at 1500?°C for 2?h. When their skeletons were fully developed, their pore sizes were in the range of 1.5–2?mm. Their porosity and flexural strength were 60.2–65.1% and 8.3–10.5?MPa, respectively.  相似文献   

20.
The sequence of crystallization in a recrystallizable lithium silicate sealing glass‐ceramic Li2O–SiO2–Al2O3–K2O–B2O3–P2O5–ZnO was analyzed by in situ high‐temperature X‐ray diffraction (HTXRD). Glass‐ceramic specimens have been subjected to a two‐stage heat‐treatment schedule, including rapid cooling from sealing temperature to a first hold temperature 650°C, followed by heating to a second hold temperature of 810°C. Notable growth and saturation of Quartz was observed at 650°C (first hold). Cristobalite crystallized at the second hold temperature of 810°C, growing from the residual glass rather than converting from the Quartz. The coexistence of quartz and cristobalite resulted in a glass‐ceramic having a near‐linear thermal strain, as opposed to the highly nonlinear glass‐ceramic where the cristobalite is the dominant silica crystalline phase. HTXRD was also performed to analyze the inversion and phase stability of the two types of fully crystallized glass‐ceramics. While the inversion in cristobalite resembles the character of a first‐order displacive phase transformation, i.e., step changes in lattice parameters and thermal hysteresis in the transition temperature, the inversion in quartz appears more diffuse and occurs over a much broader temperature range. Localized tensile stresses on quartz and possible solid‐solution effects have been attributed to the transition behavior of quartz crystals embedded in the glass‐ceramics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号