首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 804 毫秒
1.
In most social insects, intercolonial and interspecific aggression are expressions of territoriality. In termites, cuticular hydrocarbons (CHCs) have been extensively studied for their role in nestmate recognition and aggressive discrimination of nonnest-mates. More recently, molecular genetic techniques have made it possible to determine relatedness between colonies and to investigate the influence of genetics on aggression. In the Formosan subterranean termite, Coptotermes formosanus, however, the role of CHCs and genetic relatedness in inter-colony aggression has been ambiguous, suggesting the involvement of additional factors in nest-mate recognition. In this study we assess the range of aggression in this termite species and characterize the influence of genetic relatedness, CHC profiles and diet on aggression levels. We collected four colonies of C. formosanus, feeding either on bald cypress or birch, from three locations in Louisiana. Inter-colony aggression ranged from low to high. Differences in CHC profiles, as well as genetic distances between colonies determined by using microsatellite DNA markers, showed no significant correlation with aggression. However, termite diet (host tree) played a significant role in determining the level of aggression. Thus, two distantly related colonies, each feeding on different diets, showed high aggression that significantly diminished if they were fed on the same wood in the laboratory (spruce). Using headspace solid phase microextraction, we found three compounds from workers fed on birch that were absent in workers fed on spruce. Such diet-derived chemicals may be involved in the complex determination of nest-mate recognition in C. formosanus.  相似文献   

2.
Cuticular hydrocarbons (CHCs) are used for chemical communication among nestmates in many ant species, and they may play a role in the discrimination of nestmates and non-nestmates. Using the mandible opening response (MOR) bioassay, we tested the response of the African termite raiding ant, Pachycondyla analis, to CHC extracts of nestmates and non-nestmates. The ants were able to distinguish control chemical cues, from nestmate CHCs, and from non-nestmate CHCs, and, based on a CHC recognition threshold, aggression was demonstrated toward non-nestmates. Gas chromatography (GC) and GC-mass spectrometric analyses showed that CHC components of different ant colonies had chain lengths ranging from C8 to C31, comprising mainly n-alkanes, alkenes, and methyl branched alkanes, with the n-alkanes occurring in the same proportions among all colonies. The ants were grouped successfully according to their colonies of origin by using discriminant analysis of CHCs. We demonstrate that nestmate recognition occurs in P. analis, and that some of the cues involved are evidently alkenes and methyl-branched alkanes.  相似文献   

3.
The insect integument is covered by cuticular hydrocarbons (CHCs) which provide protection against environmental stresses, but are also used for communication. Here we review current knowledge on environmental and insect-internal factors which shape phenotypic plasticity of solitary living insects, especially herbivorous ones. We address the dynamics of changes which may occur within minutes, but may also last weeks, depending on the species and conditions. Two different modes of changes are suggested, i.e. stepwise and gradual. A switch between two distinct environments (e.g. host plant switch by phytophagous insects) results in stepwise formation of two distinct adaptive phenotypes, while a gradual environmental change (e.g. temperature gradients) induces a gradual change of numerous adaptive CHC phenotypes. We further discuss the ecological and evolutionary consequences of phenotypic plasticity of insect CHC profiles by addressing the question at which conditions is CHC phenotypic plasticity beneficial. The high plasticity of CHC profiles might be a trade-off for insects using CHCs for communication. We discuss how insects cope with the challenge to produce and “understand” a highly plastic, environmentally dependent CHC pattern that conveys reliable and comprehensible information. Finally, we outline how phenotypic plasticity of CHC profiles may promote speciation in insects that rely on CHCs for mate recognition.  相似文献   

4.
Cuticular hydrocarbons (CHCs), the dominant fraction of the insects’ epicuticle and the primary barrier to desiccation, form the basis for a wide range of chemical signaling systems. In eusocial insects, CHCs are key mediators of nestmate recognition, and colony identity appears to be maintained through a uniform CHC profile. In the unicolonial Argentine ant Linepithema humile, an unparalleled invasive expansion has led to vast supercolonies whose nestmates can still recognize each other across thousands of miles. CHC profiles are expected to display considerable variation as they adapt to fundamentally differing environmental conditions across the Argentine ant’s expanded range, yet this variation would largely conflict with the vastly extended nestmate recognition based on CHC uniformity. To shed light on these seemingly contradictory selective pressures, we attempt to decipher which CHC classes enable adaptation to such a wide array of environmental conditions and contrast them with the overall CHC profile uniformity postulated to maintain nestmate recognition. n-Alkanes and n-alkenes showed the largest adaptability to environmental conditions most closely associated with desiccation, pointing at their function for water-proofing. Trimethyl alkanes, on the other hand, were reduced in environments associated with higher desiccation stress. However, CHC patterns correlated with environmental conditions were largely overriden when taking overall CHC variation across the expanded range of L. humile into account, resulting in conserved colony-specific CHC signatures. This delivers intriguing insights into the hierarchy of CHC functionality integrating both adaptation to a wide array of different climatic conditions and the maintenance of a universally accepted chemical profile.  相似文献   

5.
We compared the published cuticular hydrocarbon (CHC) profiles of 78 ant species across 5 subfamilies. Almost 1,000 CHCs have been described for these species, composing 187 distinct homologous series and ten hydrocarbon groups. In descending order of occurrence were: n-alkanes > monomethylalkanes > dimethylalkanes > alkenes > dienes>> trimethylalkanes>> methylalkenes > methylalkadienes > trienes > tetramethylalkanes. Odd chain lengths and positions of methyl or double bonds at odd carbon numbers were far more numerous than even chain-length compounds or bond positions. Although each species possess its own unique pattern of CHCs, we found no association between CHC profile and phylogeny. The production of the biosynthetically complex compounds (e.g., methyl branched dienes) by the most primitive living ant suggests that the basic genetic architecture required to produce the rich diversity of CHCs was already present prior to their adaptive radiation. Unlike the ubiquitous n-alkanes and monomethylalkanes, there is a huge diversity of species-specific dimethylalkanes that makes them likely candidates for species and nest-mate discrimination signals.  相似文献   

6.
Recognition is a fundamental process on which all subsequent behaviors are based at every organizational level, from the gene up to the super-organism. At the whole organism level, visual recognition is the best understood. However, chemical communication is far more widespread than visual communication, but despite its importance is much less understood. Ants provide an excellent model system for chemical ecology studies as it is well established that compounds known as cuticular hydrocarbons (CHCs) are used as recognition cues in ants. Therefore, stable species-specific odors should exist, irrespective of geographic locality. We tested this hypothesis by comparing the CHC profiles of workers of twelve species of Myrmica ants from four countries across Europe, from Iberia to the Balkans and from the Mediterranean to Fennoscandia. CHCs remained qualitatively stable within each species, right down to the isomer level. Despite the morphological similarity that occurs within the genus Myrmica, their CHCs were highly diverse but remarkably species-specific and stable across wide geographical areas. This indicates a genetic mechanism under strong selection that produces these species-specific chemical profiles, despite each species encountering different environmental conditions across its range.  相似文献   

7.
In social insects, cuticular hydrocarbons (CHCs) play a central role in nestmate recognition. CHCs have proved to be useful for identifying species and differentiating populations. In combination with CHCs, isoprenoid soldier defensive secretions (SDSs) have been previously used in some termite species for chemotaxonomic analyses. This study compared the levels of chemical variation within and among introduced (French) and native (U.S.) populations of the subterranean termite, Reticulitermes flavipes. Worker CHCs and soldier SDSs from termites collected from colonies in nine populations in Florida, Louisiana, and France were analyzed. Discriminant analyses revealed that both localities and populations can be distinguished by using the variation in CHC profiles. Principal component analyses of CHC profiles as well as the calculation of two distance parameters (Nei and Euclidean) revealed remarkable chemical homogeneity within and among French populations. These analyses also showed that the CHC profiles of French populations were closer to termite populations from Louisiana than to those from Florida. Of the six distinct SDS chemotypes, one was common to populations in France and Louisiana. The possibility that populations in France originated from Louisiana, and the potential causes and consequences of chemical homogeneity within introduced populations are discussed.  相似文献   

8.
Parasitic wasps which attack insects infesting processed stored food need to locate their hosts hidden inside these products. Their host search is well-known to be guided by host kairomones, perceived via olfaction or contact. Among contact kairomones, host cuticular hydrocarbons (CHCs) may provide reliable information for a parasitoid. However, the chemistry of CHC profiles of hosts living in processed stored food products is largely unknown. Here we showed that the ectoparasitoid Holepyris sylvanidis uses CHCs of its host Tribolium confusum, a worldwide stored product pest, as kairomones for host location and recognition at short range. Chemical analysis of T. confusum larval extracts by gas chromatography coupled with mass spectrometry revealed a rich blend of long-chain (C25-C30) hydrocarbons, including n-alkanes, mono-, and dimethylalkanes. We further studied whether host larvae leave sufficient CHCs on a substrate where they walk along, thus allowing parasitoids to perceive a CHC trail and follow it to their host larvae. We detected 18 CHCs on a substrate that had been exposed to host larvae. These compounds were also found in crude extracts of host larvae and made up about a fifth of the CHC amount extracted. Behavioral assays showed that trails of host CHCs were followed by the parasitoids and reduced their searching time until successful host recognition. Host CHC trails deposited on different substrates were persistent for about a day. Hence, the parasitoid H. sylvanidis exploits CHCs of T. confusum larvae for host finding by following host CHC trails and for host recognition by direct contact with host larvae.  相似文献   

9.
Insect cuticular hydrocarbons (CHCs) were probed by matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry with a lithium 2,5-dihydroxybenzoate matrix. CHC profiles were obtained for 12 species of diverse insect taxa (termites, ants, a cockroach, and a flesh fly). MALDI spectra revealed the presence of high molecular weight CHCs on the insect cuticle. Hydrocarbons with more than 70 carbon atoms, both saturated and unsaturated, were detected. When compared with gas chromatography/mass spectrometry (GC/MS), MALDI-TOF covered a wider range of CHCs and enabled CHCs of considerably higher molecular weight to be detected. Good congruity between GC/MS and MALDI-TOF was observed in the overlapping region of molecular weights. Moreover, a number of previously undiscovered hydrocarbons were detected in the high mass range beyond the analytical capabilities of current GC/MS instruments. MALDI was shown to hold potential to become an alternative analytical method for insect CHC analyses. The ability of MALDI to discriminate among species varying in the degree of their relatedness was found to be similar to GC/MS. However, neither MALDI-MS nor GC/MS data were able to describe the phylogenetic relationships.  相似文献   

10.
In mutualisms, partner discrimination is often the most important challenge for interacting organisms. The interaction between ants and aphids is a model system for studying mutualisms; ants are provided with honeydew by aphids and, in turn, the ants offer beneficial services to the aphids. To establish and maintain this system, ants must discriminate mutualistic aphid species correctly. Although recent studies have shown that ants recognize aphids as mutualistic partners based on their cuticular hydrocarbons (CHCs), it was unclear which CHCs are involved in recognition. Here, we tested whether the n-alkane or methylalkane fraction, or both, of aphid CHCs were utilized as partner recognition cues by measuring ant aggressiveness toward these fractions. When workers of Tetramorium tsushimae ants were presented with dummies coated with n-alkanes of their mutualistic aphid Aphis craccivora, ants displayed higher levels of aggression than to dummies treated with total CHCs or methyl alkanes of A. craccivora; responses to dummies treated with n-alkanes of A. craccivora were similar to those to control dummies or dummies treated with the CHCs of the non-mutualistic aphid Acyrthosiphon pisum. By contrast, ants exhibited lower aggression to dummies treated with either total CHCs or the methylalkane fraction of the mutualistic aphid than to control dummies or dummies treated with CHCs of the non-mutualistic aphid. These results suggest that T. tsushimae ants use methylalkanes of the mutualistic aphid’s CHCs to recognize partners, and that these ants do not recognize aphids as partners on the basis of n-alkanes.  相似文献   

11.
Mating is preceded by a series of interdependent events that can be broadly categorized into searching and courtship. Long-range signals convey species- and sex-specific information during searching, while short-range signals provide information specific to individuals during courtship. Studies have shown that cuticular hydrocarbons (CHCs) can be used for mate recognition in addition to protecting insects from desiccation. In Psylloidea, four species rely on semiochemicals for long-range mate attraction. Psyllid mating research has focused on long-range mate attraction and has largely ignored the potential use of cuticular hydrocarbons (CHCs) as mate recognition cues. This study investigated whether CHCs of Aacanthocnema dobsoni have semiochemical activity for long- and short-range communication prior to mating. Using a solid sampler for solvent-less injection of whole psyllids into coupled gas chromatography/mass spectrometry, we found quantitative, sex- and age-related differences in CHC profiles. Males had higher proportions of 2-MeC28, 11,15-diMeC29, and n-C33 alkanes, while females had higher proportions of 5-MeC27, 3-MeC27, 5,15-diMeC27, n-C29 and n-C30 alkanes. In males and females, 84 and 68 % of CHCs varied with age, respectively. Y-tube olfactometer bioassays provided no evidence that males or females responded to odors emanating from groups of conspecifics of the opposite sex. Tests of male and female psyllids for attraction to branchlets previously occupied by conspecifics showed no evidence of attraction to possible semiochemical residues. Our short-range chemoreception bioassay showed that males were as indifferent to freshly killed individuals of either sex with intact CHC profiles as to those treated with hexane (to remove CHCs). Aacanthocnema dobsoni utilizes substrate–borne vibrations (SBVs) for communication. Therefore, our results indicate that SBVs are probably more important than semiochemicals for long-range mate attraction. Furthermore, CHCs are unlikely to mediate short-range mate recognition or provide mate assessment cues.  相似文献   

12.
Insect cuticular hydrocarbons (CHCs) are primarily antidesiccation agents, but they also play crucial roles in intra- and interspecific communication, especially among social Hymenoptera. The complex CHC profiles of social insects have often been compared among individuals, kin, nestmates, colonies, and species. In the ant Formica exsecta, only the (Z)-9-alkene part of the CHC profile encodes the nestmate signal. Here, we showed that the other major part of the CHC profile with n-alkane components is influenced strongly by the task a worker performs (foraging vs nonforaging). This part of the profile is independent of the nestmate signal. Therefore, the CHC profile of F. exsecta workers is composed of two independent parts: a colony-specific (Z)-9-alkene profile under genetic influence and an environmentally influenced task-related n-alkane profile. The dissociating of the CHC profile into two or more independent parts has implications for the analysis and interpretation of past and future CHC studies.  相似文献   

13.
The cuticular hydrocarbons (CHCs) of the ant Lasius niger are described. We observe a high local colony specificity of the body cuticular profile as predicted for a monogynous and multicolonial species. The CHCs show a low geographical variation among different locations in France. The CHCs on the legs also are colony specific, but their relative quantities are slightly different from those on the main body. For the first time, we demonstrate that the inner walls of the ant nest are coated with the same hydrocarbons as those found on the cuticle but in different proportions. The high amount of inner-nest marking and its lack of colony-specificity may explain why alien ants are not rejected once they succeed in entering the nest. The cuticular hydrocarbons also are deposited in front of the nest entrance and on the foraging arena, with a progressive increase in n-alkanes relative amounts. Chemical marks laid over the substrate are colony specific only when we consider methyl-branched alkanes. Our data confirm that these “footprint hydrocarbons” are probably deposited passively by the contact of ant tarsae with the substrate. These results suggest that the CHCs chemical profiles used by ants in colony recognition are much more complex than a single template: ants have to learn and memorize odors that vary depending on their context of perception.  相似文献   

14.
15.
Territorial boundaries between conspecific social insect colonies are maintained through a highly developed nestmate recognition system modulated by heritable and, in some instances, nonheritable cues. Argentine ants, Linepithema humile, use both genetic and environmentally derived cues to discriminate nestmates from nonnestmates. We explored the possibility that intraspecific aggression in the Argentine ant might diminish when colonies shared a common diet. After segregating recently field-collected colony pairs into high or moderate aggression categories, we examined the effect of one of three diets: two hydrocarbon-rich insect prey, Blattella germanica and Supella longipalpa, and an artificial (insect-free) diet, on the magnitude of aggression loss. Aggression diminished between colony pairs that were initially moderately aggressive. However, initially highly aggressive colony pairs maintained high levels of injurious aggression throughout the study, independent of diet type. Each diet altered the cuticular hydrocarbon profile by contributing unique, diet-specific cues. We suggest that acquisition of common exogenous nestmate recognition cues from shared food sources may diminish aggression and promote fusion in neighboring colonies of the Argentine ant.  相似文献   

16.
In insects, cuticular hydrocarbons (CHCs) generally are used as cues and signals for within colony processes, such as signaling reproductive status, and between colony processes, such as colony membership. We examined CHC profiles of the facultatively polygynous ant Pachycondyla verenae in order to identify chemical signals of reproductive queens within colonies containing many gynes. Colonies of P. verenae, belonging to two different members of a complex of morphospecies, were collected from three geographic localities within South America. We also tested whether CHC profiles differed between geographic localities and morphospecies. We found three alkenes, two isomers of pentacosene and heptacosene, which were more abundant in CHC profiles of reproductive queens of this morphospecies complex. When we tested whether these differences were consistent across geographic localities, we found the abundance of these alkenes differed according to morphospecies, with the isomers of pentacosene being more abundant in queens from morph one, and heptacosene being more abundant in queens from morph two. Our study has given further insight into the mechanisms behind maintenance of reproductive dominance, and has demonstrated that chemical signatures associated with reproductive status in Pachycondyla verenae are not conserved within this species complex.  相似文献   

17.
Numerous animals have evolved effective mechanisms to integrate into and exploit ant societies. Chemical integration strategies are particularly widespread among ant symbionts (myrmecophiles), probably because social insect nestmate recognition is predominantly mediated by cuticular hydrocarbons (CHCs). The importance of an accurate chemical mimicry of host CHCs for social acceptance recently has been demonstrated in a myrmecophilous silverfish. In the present study, we investigated the role of chemical mimicry in the myrmecophilous spider Gamasomorpha maschwitzi that co-occurs in the same host, Leptogenys distinguenda, as the silverfish. To test whether spiders acquire mimetic CHCs from their host or not, we transferred a stable isotope-labeled hydrocarbon to the cuticle of workers and analyzed the adoption of this label by the spiders. We also isolated spiders from hosts in order to study whether this affects: 1) their chemical host resemblance, and 2) their social integration. If spiders acquired host CHCs, rather than biosynthesizing them, they would be expected to lose these compounds during isolation. Spiders acquired the labeled CHC from their host, suggesting that they also acquire mimetic CHCs, most likely through physical contact. Furthermore, isolated spiders lost considerable quantities of their CHCs, indicating that they do not biosynthesize them. However, spiders remained socially well integrated despite significantly reduced chemical host similarity. We conclude that G. maschwitzi depends less on chemical mimicry to avoid recognition and aggressive rejection than the silverfish previously studied, suggesting that the two myrmecophiles possess different adaptations to achieve social integration.  相似文献   

18.
Introduced populations of the Argentine ant, Linepithema humile, have experienced moderate to severe losses of genetic diversity, which may have affected nestmate recognition to various degrees. We hypothesized that cuticular hydrocarbons (CHC) serve as nestmate recognition cues, and facilitate colony fusion of unrelated L. humile colonies that share similar CHC profiles. In this study, we paired six southeastern U.S. L. humile colonies in a 6-month laboratory fusion assay, and determined if worker and queen CHC profile similarity between colonies was associated with colony fusion and intercolony genetic similarity. We also compared worker and queen CHC profiles between fused colony pairs and unpaired controls to determine if worker and queen chemical profiles changed after fusion. We found that colony fusion correlated with the CHC similarity of workers and queens, with the frequency of fusion increasing with greater CHC profile similarity between colonies. Worker and queen CHC profile similarity between colonies also was associated with genetic similarity between colonies. Queen CHC profiles in fused colonies appeared to be a mix of the two colony phenotypes. In contrast, when only one of the paired colonies survived, the CHC profile of the surviving queens did not diverge from that of the colony of origin. Similarly, workers in non-fused colonies maintained their colony-specific CHC, whereas in fused colonies the worker CHC profiles were intermediate between those of the two colonies. These results suggest a role for CHC in regulating interactions among mutually aggressive L. humile colonies, and demonstrate that colony fusion correlates with both genetic and CHC similarities. Further, changes in worker and queen chemical profiles in fused colonies suggest that CHC plasticity may sustain the cohesion of unrelated L. humile colonies that had fused.  相似文献   

19.
The possession of a colony identity is a fundamental property that underlies much animal behavior. In insect societies, it is widely accepted that nest-mate recognition cues are encoded within the cuticular hydrocarbons. Despite numerous studies over the past 30years, the identification of these nest-mate specific signatures is only just starting to occur. In this paper, we show two different methods by which nest-mate-specific signatures can be encoded within the hydrocarbon profile of two species of Formica ants. In F. exsecta, nest-mate-specific signatures rely on the distribution of chain lengths of a single type of hydrocarbon, various (Z)-9-alkenes, which are present in colony-specific proportions. In F. fusca, variation in nine different positional isomers of C(25)-dimethylalkanes is sufficient to produce unique colony profiles. By using this information alone, we correctly assigned 97 F. exsecta workers into their respective 20 colonies and 111 F. fusca workers into their respective 30 colonies. These two systems or variations of them may be expected to occur in many insect societies that have a strong colony identity.  相似文献   

20.
Insect cuticular hydrocarbons are usually species-specific mixtures and may serve for species and gender recognition. They are, therefore, widely used in the chemotaxonomy and zoogeography of various insect taxa. In order to provide a basic study for further comparative analyses of cuticular hydrocarbon (CHC) profiles of cryptic species hidden within the South American fruit fly Anastrepha fraterculus complex (Diptera: Tephritidae), we analyzed the composition of the CHCs and their production with respect to age and sex in a laboratory population from Tucuman, Argentina. Several techniques of gas chromatography with mass spectrometric detection have been used in order to develop a suitable method for CHC identification, i.e., GC-MS in EI mode, GC-MS in CI mode, and GC×GC/TOFMS. Our analyses revealed a complex profile of aliphatic hydrocarbons in both males and females, consisting predominantly of n-alkanes, methyl-branched alkanes, as well as of alkenes and alkadienes. In young individuals (up to about 5?days after emergence), the CHC profiles were similar in males and females. However, in older flies, these profiles diverged and became clearly sex-specific. The temporal dynamics of the CHC patterns in both sexes were evaluated using multivariate exploratory techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号