首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
In the mammalian testis, Leydig cells are primarily responsible for steroidogenesis. In adult stallions, the major endocrine products of Leydig cells include testosterone and estrogens. 3β-hydroxysteroid dehydrogenase/Δ(5)-Δ(4)-isomerase (3βHSD) and 17α-hydroxylase/17,20-lyase (P450c17) are two key steroidogenic enzymes that regulate testosterone synthesis. Androgens produced by P450c17 serve as substrate for estrogen synthesis. The aim of this study was to investigate localization of the steroidogenic enzymes P450c17, 3βHSD, and P450arom and to determine changes in expression during development in the prepubertal, postpubertal, and adult equine testis based upon immunohistochemistry (IHC) and real-time quantitative PCR. Based on IHC, 3βHSD immunolabeling was observed within seminiferous tubules of prepubertal testes and decreased after puberty. On the other hand, immunolabeling of 3βHSD was very weak or absent in immature Leydig cells of prepubertal testes and increased after puberty. HSD3B1 (3βHSD gene) mRNA expression was higher in adult testes compared with prepubertal (P=0.0001) and postpubertal testes (P=0.0041). P450c17 immunolabeling was observed in small clusters of immature Leydig cells in prepubertal testes and increased after puberty. CYP17 (P450c17 gene) mRNA expression was higher in adult testes compared with prepubertal (P=0.030) and postpubertal testes (P=0.0318). A weak P450arom immunolabel was observed in immature Leydig cells of prepubertal testes and increased after puberty. Similarly, CYP19 (P450arom gene) mRNA expression was higher in adult testes compared with prepubertal (P=0.0001) and postpubertal (P=0.0001) testes. In conclusion, Leydig cells are the primary cell type responsible for androgen and estrogen production in the equine testis.  相似文献   

2.
3.
The role of the gonadotrophins in regulating numbers of Leydig and Sertoli cells during fetal and postnatal development was examined using normal mice and hypogonadal (hpg) mice, which lack circulating gonadotrophins. The disector method was used to determine the number of cells from day 16 of gestation until adulthood. The numbers of Leydig cells did not change significantly between day 16 of gestation and day 5 after parturition in normal mice and were not significantly different from numbers in hpg mice at any age up to day 5 after parturition. There was a 16-fold increase in the number of Leydig cells in normal mice between day 5 and day 20 after parturition, followed by a further doubling of number of cells between day 20 and adulthood. The number of Leydig cells in hpg testes did not change between day 5 and day 20 after parturition but doubled between day 20 and adulthood so that the number of cells was about 10% of normal values from day 20 onwards. Leydig cell volume was constant in normal animals from birth up to day 20 and then showed a 2.5-fold increase in adult animals. Leydig cell volume was normal in hpg testes at birth but decreased thereafter and was about 20% of normal volume in adult mice. The number of Sertoli cells increased continuously from day 16 of gestation to day 20 after gestation in normal mice and then remained static until adulthood. The number of Sertoli cells in hpg testes was normal throughout fetal life but was reduced by about 30% on day 1 (day of parturition). Thereafter, Sertoli cells proliferated at a slower rate but over a longer period in the hpg testis so that on day 20 after parturition the number of Sertoli cells was about 50% of normal values, whereas in adult mice the number was 65% of normal. The number of gonocytes did not change between day 16 of gestation and day 1 and did not differ between normal and hpg testes. The number of gonocytes increased nine-fold in normal testes but only three-fold in hpg testes between day 1 and day 5 after parturition. Gonocytes differentiated into spermatogonia in both normal and hpg testes between day 5 and day 20 after parturition. These results show: (i) that fetal development of both Sertoli and Leydig cells is independent of gonadotrophins; (ii) that normal differentiation and proliferation of the adult Leydig cell population (starting about day 10 after parturition) is dependent on the presence of gonadotrophins; and (iii) that the number of Sertoli cells after birth is regulated by gonadotrophins, although proliferation will continue, at a lower rate and for longer, in the absence of gonadotrophins.  相似文献   

4.
Usp9x, an X-linked deubiquitylating enzyme, is stage dependently expressed in the supporting cells (i.e. Sertoli cells and granulosa cells) and germ cells during mouse gametogenesis. Af-6, a cell junction protein, has been identified as a substrate of Usp9x, suggesting a possible association between Usp9x and Af-6 in spermatogenesis and oogenesis. In this study, we examined the expression pattern of Af-6 and Usp9x and their intracellular localization in testes and ovaries of mice treated with or without pregnant mare serum gonadotropin (PMSG), an FSH-like hormone. In both testes and ovaries, Af-6 expression was predominantly observed in supporting cells, as well as in steroidogenic cells, but not in any germ cells. In Sertoli cells, Af-6 was continuously expressed throughout postnatal and adult stages, where both Af-6 and Usp9x were enriched at the sites of Sertoli-Sertoli and Sertoli-spermatid junctions especially at stages XI-VI. In the granulosa cells, Af-6, as well as Usp9x, was highly expressed in primordial and primary follicles, but its expression rapidly decreased after the late-secondary follicle stage. Interestingly, in PMSG-treated mice, the expression levels of Af-6 and Usp9x were synchronously enhanced, slightly in Sertoli cells and strongly in granulosa cells of the late-secondary and Graafian follicles. Such closely correlated expression patterns between Af-6 and Usp9x clearly suggest that Af-6 may be deubiquitylated by Usp9x in both Sertoli and granulosa cells. It further suggests that the post-translational regulation of Af-6 by Usp9x may be one potential pathway to control the cell adhesion dynamics in mammalian gametogenesis.  相似文献   

5.
Testicular development is governed by the combined influence of hormones and proteins, including FSH, inhibins, activins and follistatin (FST). This study documents the expression of these proteins and their corresponding mRNAs, in testes and serum from mice aged 0 through 91 days post partum (dpp), using real-time PCR, in situ hybridisation, immunohistochemistry, ELISA and RIA. Serum immunoactive total inhibin and FSH levels were negatively correlated during development, with FSH levels rising and inhibin levels falling. Activin A production changed significantly during development, with subunit mRNA and protein levels declining rapidly after 4 dpp, while simultaneously levels of the activin antagonists, FST and inhibin/activin beta(C), increased. Inhibin/activin beta(A) and beta(B) subunit mRNAs were detected in Sertoli, germ and Leydig cells throughout testis development, with the beta(A) subunit also detected in peritubular myoid cells. The alpha, beta(A), beta(B) and beta(C) subunit proteins were detected in Sertoli and Leydig cells of developing and adult mouse testes. While beta(A) and beta(B) subunit proteins were observed in spermatogonia and spermatocytes in immature testes, beta(C) was localised to leptotene and zygotene spermatocytes in immature and adult testes. Nuclear beta(A) subunit protein was observed in primary spermatocytes and nuclear beta(C) subunit in gonocytes and round spermatids. The changing spatial and temporal distributions of inhibins and activins indicate that their modulated synthesis and action are important during onset of murine spermatogenesis. This study provides a foundation for evaluation of these proteins in mice with disturbed testicular development, enabling their role in normal and perturbed spermatogenesis to be more fully understood.  相似文献   

6.
7.
Testicular tumours in dogs are of Sertoli cell, Leydig cell or germinal origin and mixed tumours are also frequently observed. The cellular components of mixed tumours are usually identified by histological examination but sometimes this is difficult. In this study, a panel of specific antibodies was used to identify the different cell types in testicular tumours by immunohistochemistry. Leydig cells were identified using an antibody against the LH receptor and an antibody against the steroidogenic enzyme 3beta-hydroxysteroid dehydrogenase (3beta-HSD), both of which are characteristic of Leydig cells in testes. Sertoli cells were identified using an antibody against the intermediate filament vimentin. Seminoma cells did not stain with any of these antibodies. Vimentin was used only in histologically complex cases. Eighty-six tumours, diagnosed histologically as 29 Sertoli cell tumours, 25 Leydig cell tumours, 19 seminomas and 13 mixed tumours, were studied. Feminization was observed in 17 dogs. Leydig cell tumours stained positively with the antibodies against the LH receptor and 3beta-HSD, whereas seminomas and Sertoli cell tumours were negative (unstained). The antibody against vimentin stained both Sertoli and Leydig cells, and tumours arising from these cells, but not seminomas. Immunohistochemistry revealed that three tumours identified histologically as Sertoli cell tumours were actually Leydig cell tumours. In 14 dogs the histological diagnosis appeared to be incomplete, as mixed tumours instead of pure types of tumours were identified in 11 dogs, and in three dogs mixed tumours appeared to be pure types. Hence, the histological diagnosis was insufficient in approximately 20% of dogs. Furthermore, immunohistochemical analysis of testis tumours revealed that feminization occurred in dogs with Sertoli cell tumours or Leydig cell tumours and their combinations, but not in dogs with a seminoma. In conclusion, incubation with antibodies against LH receptor and 3beta-HSD proved to be a consistently reliable method for identification of Leydig cell tumours in dogs. Vimentin can be used to discriminate between Sertoli cell tumours and seminomas. Overall, this panel of antibodies can be very useful for determination of the identity of testicular tumours in which histological characterization is complicated and the pathogenesis of feminization is not clear.  相似文献   

8.
9.
Sertoli cell proliferation occurs in two major waves after birth, one neonatally and another prepubertally, each contributing to final testicular size and sperm production. However, little is known about the regulation of either wave. We have previously shown that letrozole, an inhibitor of estrogen synthesis, increases Sertoli cell number and testicular size at sexual maturity in boars. These studies were conducted to determine whether letrozole affects the first or second proliferative wave. Boars were treated with letrozole during the first wave (treatment at 1, 3, and 5 weeks), less frequently (1 week of age only, or 1 and 5 weeks), on postnatal day 1, or during the second wave (weeks 11-16). Sertoli cells were enumerated in testes and estrogen concentrations were evaluated in serum and testes. Compared with vehicle controls, letrozole reduced estrogen in boars treated at weeks 1 and 5 or 1, 3, and 5, on postnatal day 1, or prepubertally. However, Sertoli cell numbers were increased only in boars treated at 1, 3, and 5 weeks of age. Neither perinatal (1 day old) nor prepubertal letrozole treatment affected Sertoli cell numbers. Hence, Sertoli cell proliferation was sensitive to letrozole only if letrozole was administered throughout the first wave, even though estrogen synthesis was effectively inhibited at all ages. These data indicate that the neonatal but not the prepubertal window of Sertoli cell proliferation is sensitive to an inhibitor of estrogen synthesis; this suggests that these two waves are differently regulated.  相似文献   

10.
11.
The objective of this study was to compare the expression of Col1a1, Col1a2, and procollagen I in the seminiferous tubules of immature and adult mice and to characterize the cellular expression pattern of procollagen I in germ cells during spermatogenesis in order to provide necessary groundwork for further functional studies in the process of spermatogenesis. Microarray analysis demonstrated that Col1a1 and Col1a2 were abundantly expressed in the seminiferous tubules of 6-day-old mice compared with 60-day-old mice, and the expression levels of Col1a1 and Col1a2 mRNA were validated using a semi-quantitative RT-PCR assay. Western blot analysis further confirmed that procollagen I was expressed at a higher level in the seminiferous tubules of 6-day-old mice compared with 60-day-old mice. Immunohistochemical analysis revealed that type A spermatogonia were positive for procollagen I in the testis of 6-day-old mice, whereas Sertoli cells were negative for this protein. The in vivo procollagen I staining in type A spermatogonia was corroborated in spermatogonia exhibiting a high potential for proliferation and the ability to form germ cell colonies in in vitro culture. Moreover, procollagen I was also detected in type A spermatogonia, intermediate spermatogonia, type B spermatogonia, and preleptotene spermatocytes in the adult mouse testes, but positive staining disappeared in more differentiated germ cell lineages detaching from the basement membrane, including leptotene spermatocytes, pachytene spermatocytes, round spermatids and elongated spermatids. These data suggest that Col1a1, Col1a2 and procollagen I are associated with type A spermatogonia and play a potential role in mediating the detachment and migration of germ cells during spermatogenesis.  相似文献   

12.
Dazl knockout male mice are infertile because their germ cells are unable to complete the first meiotic prophase in the first wave of spermatogenesis and thereafter decrease in number due to a block at the A-aligned to A1 transition. The ability of the surviving somatic components of the testes to retain their function in the absence of mature germ cells was tested by injecting marked wild-type germ cell suspensions containing spermatogonial stem cells. Comparison of the frequency and extent of colonization of Dazl knockout testes with that of testes chemically depleted of germ cells showed little if any difference. It was concluded that Dazlko testes seem unimpaired in their ability to support spermatogenesis. Therefore, Dazlko testes provide a useful and reliable recipient in which to evaluate spermatogonial stem cells. The results furthermore demonstrate that the somatic compartment of the testis of these animals retains functionality.  相似文献   

13.
Fetal (FLC) and adult Leydig cells (ALC) secrete insulin-like peptide 3 (INSL3), which is linked to cryptorchidism in the newborn rat. Its gene regulation appears to be independent of that for most steroidogenic enzymes, and may thus be a marker for other aspects of ALC differentiation. Our study examined the following on INSL3 peptide expression in ALC lineage (i) timing, (ii) which cell stage, and (iii) effects of triiodothyronine (T3). Male Sprague-Dawley (SD) rats of postnatal days (pd) 1, 5, 7-21, 28, 40, 60, and 90 were used for the objectives (i) and (ii). For the objective (iii), control and T3-treated (daily T3 SC, 50 mug/kg bw) SD rats of pd7-16 and 21 were used. INSL3 was immunolocalized in Bouin's-fixed testes. FLC were positive and mesenchymal and Leydig progenitor cells were negative for INSL3 at tested ages. INSL3 in ALC lineage was first detected in newly formed ALC on pd16, although they were present from pd10. The intensity of INSL3 label was greater in ALC of pd40-90. ALC were present in T3-treated testes at pd9, but INSL3 first detected in them was on pd12. While INSL3 in FLC regulates testicular descent, INSL3 in ALC still has no well-defined function. However, its pattern of expression correlates temporally with the development of steroidogenic function and spermatogenesis. Thus, the delay between ALC differentiation and INSL3 expression in them implies that INSL3 in ALC is associated with maturation. The advancement of INSL3 expression in the ALC of T3-treated rats implies that this function is established earlier with T3-treatment.  相似文献   

14.
Male rats with hypogonadism (hgn/hgn) experience sterility from testicular dysplasia, which is controlled by a single recessive gene, hgn. The postnatal growth of the seminiferous tubules was severely affected. In this study, we localized the hgn locus to a 320 kb region on rat chromosome 10 and detected the insertion of a 25 bp duplication into the sixth exon of the sperm-associated antigen 5 (Spag5/astrin/MAP126) gene, which codes for a microtubule-associated protein. This mutation results in a truncated Spag5 protein lacking the primary spindle-targeting domain at the C terminus. Immunological staining with antibodies to markers for Sertoli and germ cells during the early postnatal period indicated that the abnormal mitosis with dispersed chromosomes in hgn/hgn testes occurs in proliferating Sertoli cells. Therefore, apoptotic Sertoli cell death would result from the disorganization of the spindle apparatus caused by defective Spag5. These findings suggested that the Spag5 is essential for testis development in rats and that the hgn/hgn rat is a unique animal model for studying the function of Spag5.  相似文献   

15.
Disorders of testicular function may have their origins in fetal or early life as a result of abnormal development or proliferation of Sertoli cells. Failure of Sertoli cells to mature, with consequent inability to express functions capable of supporting spermatogenesis, is a prime example. In a similar way, failure of Sertoli cells to proliferate normally at the appropriate period in life will result in reduced production of spermatozoa in adulthood. This review focuses on the control of proliferation of Sertoli cells and functional maturation, and is motivated by concerns about 'testicular dysgenesis syndrome' in humans, a collection of common disorders (testicular germ-cell cancer, cryptorchidism, hypospadias and low sperm counts) which are hypothesized to have a common origin in fetal life and to reflect abnormal function of Sertoli (and Leydig) cells. The timing of proliferation of Sertoli cells in different species is reviewed, and the factors that govern the conversion of an immature, proliferating Sertoli cell to a mature, non-proliferating cell are discussed. Protein markers of maturity and immaturity of Sertoli cells in various species are reviewed and their usefulness in studies of human testicular pathology are discussed. These markers include anti-Mullerian hormone, aromatase, cytokeratin-18, GATA-1, laminin alpha5, M2A antigen, p27(kip1), sulphated glycoprotein 2, androgen receptor and Wilms' tumour gene. A scheme is presented for characterization of Sertoli-cell only tubules in the adult testis according to whether or not there is inherent failure of maturation of Sertoli cells or in which the Sertoli cells have matured but there is absence, or acquired loss, of germ cells. Functional 'de-differentiation' of Sertoli cells is considered. It is concluded that there is considerable evidence to indicate that disorders of maturation of Sertoli cells may be a common underlying cause of human male reproductive disorders that manifest at various life stages. This recognition emphasizes the important role that animal models must play to enable identification of the mechanisms via which failure of proliferation and maturation of Sertoli cells can arise, as this failure probably occurs in fetal life.  相似文献   

16.
The outcome of sperm competition (i.e. competition for fertilization between ejaculates from different males) is primarily determined by the relative number and quality of rival sperm. Therefore, the testes are under strong selection to maximize both sperm number and quality, which are likely to result in trade-offs in the process of spermatogenesis (e.g. between the rate of spermatogenesis and sperm length or sperm energetics). Comparative studies have shown positive associations between the level of sperm competition and both relative testis size and the proportion of seminiferous (sperm-producing) tissue within the testes. However, it is unknown how the seminiferous tissue itself or the process of spermatogenesis might evolve in response to sperm competition. Therefore, we quantified the different germ cell types and Sertoli cells (SC) in testes to assess the efficiency of sperm production and its associations with sperm length and mating system across 10 species of New World Blackbirds (Icteridae) that show marked variation in sperm length and sperm competition level. We found that species under strong sperm competition generate more round spermatids (RS)/spermatogonium and have SC that support a greater number of germ cells, both of which are likely to increase the maximum sperm output. However, fewer of the RS appeared to elongate to mature spermatozoa in these species, which might be the result of selection for discarding spermatids with undesirable characteristics as they develop. Our results suggest that, in addition to overall size and gross morphology, testes have also evolved functional adaptations to maximize sperm quantity and quality.  相似文献   

17.
Leydig cell function in mice lacking connexin43   总被引:1,自引:0,他引:1  
Connexin43 (Cx43) is the most abundantly expressed member of the connexin (gap junction protein) family and the only one so far identified in mouse Leydig cell gap junctions. Mice lacking Cx43 were used to investigate its role in testicular androgen production and regulation. Testes from term fetuses were grafted under the kidney capsules of castrated adult males. After 3 weeks, serum from host mice was analyzed for androgens. In order to test their response to stimulation, the grafted testes were incubated in vitro with varying concentrations of LH and their androgen end products analyzed. Incubation with radiolabeled progesterone was followed by high performance liquid chromatography to quantify the androgen-intermediate metabolites. Radiolabeled testosterone in the presence of NADPH was used to determine the activity of testosterone-metabolizing enzymes 17beta-hydroxysteroid dehydrogenase (17betaHSD), 5alpha-reductase (5alphaR), and 3alpha-hydroxysteroid dehydrogenase (3alpha HSD). Serum androgen levels did not differ between hosts carrying wild-type versus null mutant grafts although Cx43-deficient testes had more 17betaHSD and 5alphaR activity than wild-type controls. Furthermore, the genotype of grafted testes did not influence LH-stimulated androgen production in vitro. These results indicate that the steroidogenic function of Leydig cells is not compromised by the absence of Cx43, perhaps because other gap junction proteins are present. Dye transfer experiments demonstrated that Cx43-deficient Leydig cells retain intercellular coupling, indicating that Cx43 is not the only protein contributing to their gap junctions. Thus, despite their prominence in Leydig cells, Cx43 gap junctions are not essential for androgen production.  相似文献   

18.
To better understand the role(s) of progestogens during early stages of spermatogenesis, we carried out studies on the nuclear progesterone receptor (Pgr) of the Atlantic salmon. Its open-reading frame shows the highest similarity with other piscine Pgr proteins. When expressed in mammalian cells, salmon Pgr exhibited progestogen-specific, dose-dependent induction of reporter gene expression, with 17α,20β-dihydroxy-4-pregnen-3-one (DHP) showing the highest potency. We then analyzed testicular pgr mRNA and DHP plasma levels in animals during the onset of spermatogenesis, which were exposed to natural light or to constant light, to induce significant differences in testis growth. Grouping of the animals according to their progress through spermatogenesis showed that testicular pgr mRNA levels as well as DHP plasma levels first increased when germ cells had reached the stage of late type B spermatogonia and further increased when entered meiosis, i.e. when spermatocytes were present. However, in situ hybridization studies revealed that pgr mRNA expression was restricted to Sertoli cells, with a strong signal in Sertoli cells contacting type A/early type B spermatogonia, while Sertoli cells contacting larger germ cell clones with further differentiated stages (e.g. late type B spermatogonia) were less intensely/not stained. We conclude that the increase in pgr mRNA levels per pair of testis reflects, at least in part, the increased number of Sertoli cells enveloping type A and early type B spermatogonia. We propose that Sertoli cell-expressed Pgr may mediate DHP-stimulated early steps in spermatogenesis in Atlantic salmon, such as an increase in the number of new spermatogonial cysts.  相似文献   

19.
Germ cell proliferation, migration and survival during all stages of spermatogenesis are affected by stem cell factor signalling through the c-Kit receptor, the expression and function of which are vital for normal male reproductive function. The present study comprehensively describes the c-Kit mRNA and protein cellular expression profiles in germ cells of the postnatal and adult rodent testis, revealing their significant elevation in synthesis at the onset of spermatogenesis. Real-time PCR analysis for both mice and rats matched the cellular mRNA expression profile where examined. Localization studies in normal mouse testes indicated that both c-Kit mRNA and protein are first detectable in differentiating spermatogonia. In addition, all spermatogonia isolated from 8-day-old mice displayed detectable c-Kit mRNA, but 30-50% of these lacked protein expression. The c-Kit mRNA and protein profile in normal rat testes indicated expression in gonocytes, in addition to differentiating spermatogonia. However, in the irradiated adult rat testes, in which undifferentiated spermatogonia are the only germ cell type, mRNA was also detected in the absence of protein. This persisted at 3 days and 1 and 2 weeks following treatment with gonadotrophin-releasing hormone (GnRH) antagonist to stimulate spermatogenesis recovery. By 4 weeks of GnRH antagonist treatment, accompanying the emergence of differentiating spermatogonia, both mRNA and protein were detected. Based on these observations, we propose that c-Kit mRNA and protein synthesis are regulated separately, possibly by influences linked to testis maturation and circulating hormone levels.  相似文献   

20.
During spermatogenesis, more than half of the differentiating spermatogenic cells undergo apoptosis before they mature into spermatozoa. Ultrastructure studies showed that the formation of lipid droplets in Sertoli cells was associated with phagocytosis of residual bodies and apoptotic germ cells by Sertoli cells. Here, a relationship between the phagocytosis of apoptotic spermatogenic cells and lipid droplet formation in Sertoli cells was studied in vitro by Oil Red O (ORO) staining. The results confirmed that the formation of lipid droplets was a result of phagocytosis of apoptotic spermatogenic cells in Sertoli cells. By comparing phagocytosis of apoptotic spermatogenic cells and thymocytes by Sertoli cells to that by macrophages, we demonstrated that the lipid droplets accumulation in phagocytes depended on phagocytosed apoptotic cell type, but not phagocyte type. However, the size of lipid droplets was related to the type of phagocytes. By this approach, we found that Sertoli cells at different postnatal stages of development had a similar phagocytic ability. These results suggested that the detection of lipid droplets by ORO staining was a practical method to evaluate the phagocytic functions of Sertoli cells in vitro. This approach could also be considered as an in vitro model to study the lipid formation, metabolism, and function in Sertoli cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号