首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
为研究不同雷诺数对大跨度屋盖结构表面风压分布特性的影响,采用大涡模拟计算流体动力学方法,计算二维屋盖表面平均和脉动风压系数;系统分析雷诺数对屋盖表面风压分布、流动分离及再附着现象的影响.数值计算结果表明:随着屋盖表面特征雷诺数的变化,屋盖表面风压分布亦发生明显变化,特征雷诺数较低时屋盖表面风压较平稳,特征雷诺数升高时屋盖前部的风压系数大幅增大,但增幅逐渐降低,最终趋于稳定.结果验证了雷诺数效应在屋盖结构风荷载模拟中的重要影响.  相似文献   

2.
风作用下雪粒会发生漂移、沉积现象,进而对结构周边区域产生不利影响。对于相邻开口结构,结构四周风致积雪分布规律较为复杂且无规范可循。因此分别以单独和相邻开口拱形屋面结构为研究对象,进行了风致积雪分布风洞试验研究,探讨了洞口方位对单独拱形结构表面及周边积雪分布的影响,结构间距和相对角度对两模型间积雪分布规律的影响。以风洞试验数据为依据,根据整体区域粒子的分形特性,定量分析了风致积雪漂移这种无规律和随机波动的外在紊乱运动。结果表明:洞口的存在极大程度影响了拱形结构周边积雪分布情况,无论在局部区域还是整体粒子区域,洞口位于侧立面时,结构周边的雪压分布较为有利;两开口模型间距越小,模型间积雪沉积越严重,对结构稳定性越不利;两模型洞口角度为30°时,局部雪深系数最大,洞口角度为60°时,整体区域的积雪分布形态最为不利,但其局部最大雪深系数要低于相对角度为30°,因此设计中应避免上述排列方式。所得结论可以为准确描述雪粒分布形态特征提供依据。  相似文献   

3.
为了研究某体育场波纹表面月牙形悬挑屋盖的风荷载特性以及屋盖表面波纹对风压的影响,对该结构进行风洞试验和计算流体动力学(CFD)分析.通过对风洞试验数据的统计分析,得到结构的平均风压、脉动风压、极值风压的分布规律和屋盖上下表面风压的相关性.基于波纹状模型的CFD数值模拟,研究发现屋盖波纹表面的波峰处风压明显大于相临的波谷处风压,而且大于光滑屋面相应区域的风压,所得这一规律可以推广到一般的波纹状悬挑结构.试验得到的极值风压可以换算成用于围护结构设计的阵风系数,在与现行规范进行比较后,给出针对该体型建筑围护结构设计中阵风系数取值的建议.将试验结果与已有研究成果进行了比较,并分析了波纹表面和建筑物阻挡对上下表面风压相关性的影响,发现悬挑结构的波纹状表面对上下表面的风压相关性影响较小,而建筑物阻挡对相关性影响较大.  相似文献   

4.
利用计算流体动力学(CFD)软件CFX11.0,采用基于雷诺平均(RANS)方法的SSTk-ω湍流模型对大跨度平屋盖风致破坏过程进行了二维数值模拟,研究了风致连续破坏过程中屋盖开口附近风压系数的变化规律。结果表明,大跨度屋盖迎风边缘部位的风吸力最大,屋盖的风致破坏往往由这些部位开始。屋盖破坏过程中破坏开口边缘处风压发生较大变化,这是屋盖风致连续破坏的主要原因。此外,结构前后入口的大小也对破坏开口外表面风压系数分布规律有较大影响。文中定性地对屋盖结构风致破坏过程进行了数值模拟分析,可为大跨度屋盖局部抗风设计提供参考。  相似文献   

5.
为了研究低矮房屋的风荷载特性及风压分布,对一四层办公楼的风场特性进行了现场实测.通过对2016年8月一次大风的实测,收集了相关数据,并进行了分析.数据分析得到了该实测房屋的风荷载特性及风压分布,同时与数值模拟结果进行对比.分析结果表明:实测房屋屋面风压以负压为主,其中角部区域负压最大,边缘部分与屋脊部分相对较小;屋面风压实测值角部区域相对于模拟值较大,而其他部分较模拟值比较偏小,但总体分布情况比较接近.  相似文献   

6.
对弧形内凹大跨钢屋盖航站楼结构的风荷载特性进行了风洞试验研究,得到屋盖平均和脉动风压系数,结构分区体型系数.理论分析采用基于Reynolds时均的RNG k-ε湍流模型,通过FLUENT软件对结构在部分风向角下的三维定常风场进行了数值模拟,分别从风压系数分布、分区体型系数变化和风速矢量图等方面进行详细研究,并与风洞试验结果对比分析.结果表明:风洞试验和数值模拟结果吻合良好,两者可相互验证.屋盖结构均承受风吸力作用,气流在迎风区域分离后形成的漩涡作用将使局部产生较大的负压区.屋盖上挑檐进行开洞处理,以及在挑檐下部设置导流板,可以有效减小其所受风荷载作用.  相似文献   

7.
双层类椭球冠形大跨屋面的表面风压数值模拟   总被引:1,自引:0,他引:1  
基于计算流体动力学(CFD)数值模拟方法,对拟建双层类椭球冠形大跨屋面进行了表面风压分析,得到了其在不同风向角下的风压分布情况和速度流场分布趋势,并进一步给出了拟建建筑在最不利工况下的风压系数分布等值线。结果表明:双层类椭球冠形大跨屋面的最大正压区出现在迎风面的近地处及上下部交界处,而最大负压区则出现在侧面的上下部交界处和顶面;上下部交界处由于形成了凹角,很容易出现最大局部正负压区块,因此在结构抗风设计时需要进行局部加强。  相似文献   

8.
采用大涡模拟方法,研究非稳态雷暴风作用下低矮建筑的风荷载特征,分析下击暴流的不同发展阶段中建筑物所在的径向位置、屋面坡度和风向角等参数对建筑风荷载的影响. 结果表明:下击暴流各发展阶段风荷载效应差异显著,当气流冲击地面后形成的首个环形涡掠过建筑时,建筑表面风荷载最大;当建筑物处于不同径向位置时,环涡经过建筑物形成的瞬态风压与同样位置处稳态射流作用下的风压差异较大;屋面坡度对迎风面风压系数分布影响较小,但对迎风侧屋面风压系数分布的影响非常显著,随着屋面坡度的增大,迎风屋面风压系数由负值逐渐变为正值;建筑物迎风前沿角部区域的风压系数受风向角的影响较为明显,在所测试的工况中,风向角为45°时影响最为显著.  相似文献   

9.
风荷载作用下LNG储罐混凝土外罐力学性能分析   总被引:1,自引:0,他引:1  
为获得大型全容式LNG储罐混凝土外罐在风荷载作用下的响应特性,以有限元软件ANSYS为分析平台,针对一160 000 m3LNG储罐实际工程建立了静力风荷载及顺风向脉动风荷载作用下的精细化有限元模型.通过对比国外学者提出的傅里叶解析式表达圆柱体表面的风压分布和中国《建筑结构荷载规范》给出的旋转壳体周向体型系数,以及中美规范关于风压高度变化系数的规定,表明中国《建筑结构荷载规范》确定风压分布对结构影响更为不利;对比了不同风向下储罐外罐的内力及变形模拟结果,获得了各风向对储罐响应的影响程度及规律;采用拟定常假设,来流风速谱取Davenport谱,储罐外罐的风振响应分析结果表明:顺风脉动风荷载作用下,结构的位移及环向应力的变化趋势与静力风荷载作用下相近,但应力及位移的极值响应结果约为静力风荷载作用2倍;与静力荷载下储罐结构的响应结果对比表明,静力风荷载及顺风向脉动风荷载对LNG储罐混凝土外罐的受力及变形影响皆不大.  相似文献   

10.
开敞式叉筒网壳风场数值模拟与受力分析   总被引:1,自引:1,他引:1  
针对国家现行<建筑结构荷载规范>缺乏复杂形体结构净风压体型系数的相关规范的问题,应用标准k-ε紊流封闭模型,采用数值风洞技术对开敞式叉筒网壳在多角度风场作用下结构表面的风压分布进行了数值模拟,获得了该类网壳的净风压体型系数.研究表明采用数值风洞技术对复杂形体结构的流场进行计算机数值模拟的方法是可行的,这为风压分布及大小取值提供了一种非实验性的、低成本的取值方法.力学分析结果表明,风对开敞式叉筒网壳的最大负压主要集中在脊线附近的边缘部位,脊线附近边缘以及谷线交叉拱是结构设计的重点.  相似文献   

11.
典型体型高层建筑双层幕墙风压分布试验   总被引:4,自引:0,他引:4  
为了明确高层建筑双层通风幕墙的风荷载取值以及与单层幕墙的差异,分别对具有弧形和L形廊道式双幕墙的圆柱形和矩形高层建筑进行风洞试验研究,通过对内外层幕墙平均风压、脉动风压随位置及风向角的分布,以及各测点全风向角下最大正、负风压的对比分析,结果表明:廊道内任意处,外幕墙内侧和内幕墙外侧承受的风压基本一致;在整体结构抗风计算时,风荷载可按相同体型单幕墙建筑的风载取值;双幕墙内幕墙的风载可按单幕墙下的进行取值,并将偏于安全.外幕墙的风载,对圆弧的中段或L形的长边,可按单幕墙的适当折减;对圆弧的端部或L形的拐角及短边,需要进行放大.  相似文献   

12.
以实际工程中的10方立式钢储罐为研究对象,采用刚性缩尺模型风洞试验方法,获得大型低矮圆柱结构内外表面的风压分布规律.结果表明:大型低矮圆柱壳结构外表面的风荷载与规范采用的数据有较大差异,内表面风压呈现出明显的波动.对平均风压和脉动风压的相关性分析表明,准定常理论仅对外表面的背风区适用.对各测点风压时程数据进行三阶和四阶矩统计量分析,研究低矮圆柱壳表面风压的非高斯特性.结果显示:绝大多数测点的概率密度偏离高斯概型.为了便于设计应用,给出非高斯峰值因子的参考数值.与以往试验结果的比较表明:不同高径比的圆柱壳风荷载有所不同,负压区的体型系数绝对值随着高径比的增大而增大.  相似文献   

13.
巨型高层开洞建筑刚性模型风洞试验研究   总被引:2,自引:1,他引:1  
用缩尺比为1:300的刚性模型对巨型高层开洞建筑进行了风洞测压试验,研究了C类场地、16个来流风向条件下,模型各表面(包括洞口内部)的风压分布特性等,并确定了结构总体风荷载及最不利风向角.结果表明:洞口的设置减小了建筑物所受的总体平均风荷载,但并非洞口越大减小风荷载越多.在建筑物上部开洞,对减小基础所受弯矩非常有利,而在中上部开洞则对减小总体平均风荷载更为有效,并且当风向与开洞方向平行时基础所受的总平均风荷载最小.风荷载沿建筑高度的变化并非按规范中的规律分布,而是中上部大、两端小.  相似文献   

14.
介绍了某体育会展中心会展馆和体育场的大跨屋盖系统模型风洞试验的概况和主要试验结果,分析了挑篷上平均风压和脉动风压的分布,讨论了脉动风压对总设计风荷载的贡献,并对比了计算围护结构风荷载的规范方法和统计方法;结果表明,正面迎风时,体育会展馆和体育场屋盖边缘的平均风压和脉动风压系数均较大,采用规范方法算得的会展馆围护结构风荷载大部分小于采用统计方法算得的数值,而用规范方法算得的体育场围护结构风荷载均小于用统计方法算得的结果。  相似文献   

15.
矩形高层建筑顺风向脉动风荷载空间相关性   总被引:1,自引:0,他引:1  
为研究风场类别、结构特征尺寸及竖向间距等因素对矩形高层建筑顺风向脉动风荷载空间相关性的影响,采用矩形刚性模型表面压力同步测量试验,对顺风向脉动风荷载及脉动风速相干函数空间分布特性进行研究,对矩形模型表面脉动风荷载与脉动风速、迎风面与背风面脉动风压的相关性进行对比分析.根据试验结果,对传统脉动风速相干函数模型进行改进,提出了可计及风场类别、结构迎风面宽度及竖向间距等流场和结构参数的矩形建筑顺风向脉动风荷载相干函数表达式.结果表明:顺风向脉动风荷载的相关性要明显强于脉动风,当矩形断面长边迎风时,迎风面脉动风压相关性低于断面整体风荷载的相关性,背风面脉动风压的弱相关性在间距较小时并不能完全忽略,采用传统脉动风速相干函数模型可能导致脉动风荷载取值偏不安全.  相似文献   

16.
本文根据双曲抛物面鞍形屋面模型的风洞实验,得到了风压分布系数的初步结果.实验是分别在模拟的大气边界层和均匀流两种流场中进行的.我们根据不同风向作用下屋面风压的实测分布规律,给出了最大风压系数和整个屋面的平均风压系数.另外还就不同矢跨比(F/L=1/10~1/20)的模型进行了实验.由这些实验结果表明,风向对屋面风压分布起着最为重要的作用.在所研究的矢跨比范围内,最大风压系数C_P=-4.6q,最大平均风压系数(绝对值)(?)_p=-0.75q(q 为速压).  相似文献   

17.
复杂体型超高层建筑风压脉动特性   总被引:2,自引:0,他引:2  
为研究超高层建筑顺风向和横风向脉动风压功率谱的变化规律,以某X型超高层建筑为工程背景,进行刚性模型测压风洞试验.利用Tamura等基于准定常假定提出的由顺风向脉动风速谱转化得到顺风向脉动风压谱的方法将Davenport和Kaimal风速谱转化为脉动风压谱,并将两者得到的风压谱与试验结果进行了对比;利用Ohkuma等提出的矩形建筑横风向风荷载功率谱的数学模型来拟合侧风面测点脉动风压谱,结果能够与试验很好的吻合.分析了相同高度处各测点之间以及不同高度测点层各测点脉动风压之间的相关性;最后研究了测点风压的水平和竖向相干性,并利用基于单参数最小二乘算法的计算程序对测点空间相干函数曲线进行拟合,结果与风洞试验吻合较好.  相似文献   

18.
大庆石油学院体育馆屋面风荷载的风洞试验及CFD数值模拟   总被引:1,自引:0,他引:1  
目的确定大庆石油学院体育馆屋面的平均风压系数,为该工程的结构抗风设计提供荷载依据,探讨采用CFD数值模拟技术来确定复杂体形建筑物表面平均风压分布的可靠性.方法对大庆石油学院体育馆屋面风荷载进行刚性模型风洞试验研究,并基于Fluent6.1软件平台,采用雷诺应力湍流模型(RSM)对屋面的平均风压进行了数值模拟.结果通过风洞试验,得到了体育馆屋盖表面的平均风压系数,并分析了屋面的风压分布特性,得出了最不利风向角和分区体型系数.通过CFD数值模拟研究,探讨了各种参数变化对平均风压计算结果的影响,并将计算结果与风洞试验数据进行对比,两者吻合较好.结论CFD数值模拟技术作为一种新型的研究方法为研究建筑物表面的静态风压分布规律提供了一种较为简便、快捷、低成本的途径。可较准确地模拟实际大跨度屋盖表面的平均风荷载.将CFD技术用于工程方案阶段的预研是一种较为安全稳妥的思路.  相似文献   

19.
采用风洞试验,结合有限元分析方法,研究输电线顺线路方向的风荷载和作用模式;研发弧形输电线风荷载的风洞试验测试装置;获得2种典型垂跨比输电线的顺线路方向比例系数;通过2个实例对比输电线顺线路方向风荷载的3种分配模式,给出输电线顺线路方向风荷载和分配模式的建议. 研究表明,各国规范中只有中国规范给出了顺线路方向风荷载的规定;垂跨比为4%和8%的输电线顺线向荷载比例系数均低于0.15,中国规范取值(0.25)偏保守;按投影高度和按规范中拉索体型系数的分配结果基本一致;按弧长分配会比按其他2种方法获得更大的竖向位移和水平位移,增大幅度约为12%;顺线路方向的比例系数建议取0.10(常规输电线)或0.12(大跨越输电线);顺线路方向的风荷载建议采用按投影高度进行分配.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号