首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Publish/subscribe paradigm is often adopted to create the communication infrastructure of the Internet of Things(IoT)for many clients to access enormous real-time sensor data.However,most current publish/subscribe middlewares are based on traditional ossified IP networks,which are difficult to enable Quality of Service(QoS).How to design the next generation publish/subscribe middleware has become an urgent problem.The emerging Software Defined Networking(SDN)provides new opportunities to improve the QoS of publish/subscribe facilities for delivering events in IoT owing to its customized programmability and centralized control.We can encode event topics,priorities and security policies into flow entries of SDN-enabled switches to satisfy personalized QoS needs.In this paper,we propose a cross-layer QoS enabled SDN-like publish/subscribe communication infrastructure,aiming at building an IoT platform to seamlessly connect IoT services with SDN networks and improving the QoS of delivering events.We first present an SDN-like topic-oriented publish/subscribe middleware architecture with a cross-layer QoS control framework.Then we discuss prototype implementation,including topic management,topology maintenance,event routing and policy management.In the end,we use differentiated services and cross-layer access control as cross-layer QoS scenarios to verify the prototype.Experimental results show that our middleware is effective.  相似文献   

2.
The phrase Internet of Things (IoT) heralds a vision of the future Internet where connecting physical things, from banknotes to bicycles, through a network will let them take an active part in the Internet, exchanging information about themselves and their surroundings. This will give immediate access to information about the physical world and the objects in it—leading to innovative services and increase in efficiency and productivity. This paper studies the state-of-the-art of IoT and presents the key technological drivers, potential applications, challenges and future research areas in the domain of IoT. IoT definitions from different perspective in academic and industry communities are also discussed and compared. Finally some major issues of future research in IoT are identified and discussed briefly.  相似文献   

3.
The Internet of Things (IoT) has become a reality with the availability of chatty embedded devices. The huge amount of data generated by things must be analysed with models and technologies of the “Big Data Analytics”, deployed on cloud platforms. The CIRUS project aims to deliver a generic and elastic cloud-based framework for Ubilytics (ubiquitous big data analytics). The CIRUS framework collects and analyses IoT data for Machine to Machine services using Component-off-the-Shelves (COTS) such as IoT gateways, Message brokers or Message-as-a-Service providers and big data analytics platforms deployed and reconfigured dynamically with Roboconf. In this paper, we demonstrate and evaluate the genericity and elasticity of CIRUS with the deployment of a Ubilytics use case using a real dataset based on records originating from a practical source.  相似文献   

4.
In recent years, applying Internet of Things (IoT) applications has significantly increased to facilitate and improve quality of human life activities in various fields such as healthcare, education, industry, economics, etc. The energy aware cloud-edge computing paradigm has developed as a hybrid computing solution to provide IoT applications using available cloud service providers and fog nodes for the smart devices and mobile applications. Since the IoT applications are developed in the form of several IoT services with various quality of service (QoS) metrics which can deploy on the cloud-edge providers with different resource capabilities, finding an efficient placement solution as one of challenging topics to be measured for IoT applications. The service placement issue arranges IoT applications on the cloud-edge providers with various capabilities of atomic services though sufficient different QoS factors to support service level agreement (SLA) contracts. This paper presents a technical analysis on the cloud-edge service placement approaches in IoT systems. The key point of this technical analysis is to identify substantial studies in the service placement approaches which need additional consideration to progress more efficient and effective placement strategies in IoT environments. In addition, a side-by-side taxonomy is proposed to categorize the relevant studies on cloud-edge service placement approaches and algorithms. A statistical and technical analysis of reviewed existing approaches is provided, and evaluation factors and attributes are discussed. Finally, open issues and forthcoming challenges of service placement approaches are presented.  相似文献   

5.
The Internet of Things (IoT) is a network of interconnected smart objects having capabilities that collectively form an ecosystem and enable the delivery of smart services to users. The IoT is providing several benefits into people's lives through the environment. The various applications that are run in the IoT environment offer facilities and services. The most crucial services provided by IoT applications are quick decision for efficient management. Recently, machine learning (ML) techniques have been successfully used to maximize the potential of IoT systems. This paper presents a systematic review of the literature on the integration of ML methods in the IoT. The challenges of IoT systems are split into two categories: fundamental operation and performance. We also look at how ML is assisting in the resolution of fundamental system operation challenges such as security, big data, clustering, routing, and data aggregation.  相似文献   

6.

The emergence of the internet of things (IoT) has drastically influenced and shaped the world of technology in the contexts of connectivity, interconnectivity, and interoperability with smart connected sensors, objects, devices, data, and applications. In fact, IoT has brought notable impacts on the global economy and human experience that span from industry to industry in a variety of application domains, including healthcare. With IoT, it is expected to facilitate a seamless interaction and communication of objects (devices) with humans in the environment. Therefore, it is imperative to embrace the potentials and benefits of IoT technology in healthcare delivery to ensure saving lives and to improve the quality of life using smart connected devices. In this paper, we focus on the IoT based healthcare system for cancer care services and business analytics/cloud services and also propose the adoption and implementation of IoT/WSN technology to augment the existing treatment options to deliver healthcare solution. Here, the business analytics/cloud services constitute the enablers for actionable insights, decision making, data transmission and reporting for enhancing cancer treatments. Furthermore, we propose a variety of frameworks and architectures to illustrate and support the functional IoT-based solution that is being considered or utilized in our proposed smart healthcare solution for cancer care services. Finally, it will be important to understand and discuss some security issues and operational challenges that have characterized the IoT-enabled healthcare system.

  相似文献   

7.
Since the term Internet of Things (IoT) was coined by Kevin Ashton in 1999, a number of middleware platforms have been developed to cope with important challenges such as the integration of different technologies. In this context of heterogeneous technologies, IoT message brokers become critical elements for the proper function of smart systems and wireless sensor networks (WSN) infrastructures. There are several evaluations made on IoT messaging middleware performance. Nevertheless, most of them ignore crucial aspects of the IoT context that also need to be included, such as reliability and other qualitative aspects. Thus, in this article, we propose a methodology for classification and evaluation of IoT brokers to help the scientific community and technology industry on evaluating them according to their interests, without leaving out important aspects for the context of smart environments. Our methodology bases its qualitative evaluations on the ISO/IEC 25000 (SQuaRE) set of standards and its quantitative evaluations on Jain's process for performance evaluation. We developed a case study to illustrate our proposal with 12 different open-source brokers, validating the feasibility of our methodological approach.  相似文献   

8.
The emergence of data engineering along with the support of Online Social Networks is growing by millions every day due to the introduction of wireless systems and Internet of Things. The rapid growth of usage of smart devices helps to create new generation knowledge sharing platforms. Data Analytics has a major role to play in the growth and success of wireless and IoT applications. The growth of data has become exponential and is difficult to analyze. Many researchers depend on the data available on Wireless Systems and IoT for developing new generation services and applications. With the opportunity of information and communication technologies like heterogeneous networking, cloud computing, web services, crowd sensing and data mining, ubiquitous and asynchronous information sharing is feasible. But this also brings out a lot of provocations with respect to conflicting standards, data portability, data aggregation, data distribution, differential context and communication overhead. The smart information and communication technology has changed many features of human lifestyle: personal and work places.  相似文献   

9.
In the Internet of Things (IoT), security and privacy issues of physical objects are crucial to the related applications. In order to clarify the complicated security and privacy issues, the life cycle of a physical object is divided into three stages of pre-working, in-working, and post-working. On this basis, a physical object-based security architecture for the IoT is put forward. According to the security architecture, security and privacy requirements and related protecting technologies for physical objects in different working stages are analyzed in detail. Considering the development of IoT technologies, potential security and privacy challenges that IoT objects may face in the pervasive computing environment are summarized. At the same time, possible directions for dealing with these challenges are also pointed out.  相似文献   

10.
Almusaylim  Zahrah A.  Zaman  Noor 《Wireless Networks》2019,25(6):3193-3204

The smart home is considered as an essential domain in Internet of Things (IoT) applications, it is an interconnected home where all types of things interact with each other via the Internet. This helps to automate the home by making it smart and interconnected. However, at the same time, it raises a great concern of the privacy and security for the users due to its capability to be controlled remotely. Hence, the rapid technologically growth of IoT raises abundant challenges such as how to provide the home users with safe and secure services keeping privacy in the account and how to manage the smart home successfully under the controlled condition to avoid any further secrecy or theft of personal data. A number of the research papers are available to address these critical issues, researchers presented different approaches to overcome these stated issues. This research review will analyze smart home approaches, challenges and will suggest possible solutions for them and illustrate open issues that still need to be addressed.

  相似文献   

11.
Decision making plays a vital role in the selection of resources so that they actively participate for communication and computation on the Internet‐of‐Things platform. For the same, they require the elimination of the challenges related to knowledge representation, discovery, trust, and security due to continuously changing mobility patterns, heterogeneity, interoperability, and scalability on the network. To address the challenges, a novel three‐layered approach, namely, middleware approach for reliable resource selection on Internet‐of‐Things (MARRS‐IoT), is proposed. It performs a search through neighbor discovery algorithm and evaluates trust score of the discovered resources, both locally and globally using fuzzy‐decision algorithm and performs efficient communication among resources via hybrid M‐gear protocol. The approach is simulated and compared against algorithms, namely, particle swarm optimization, ants colony optimization, and binary genetic to evaluate its performance. The obtained results support the efficacy of the MARRS‐IoT with respect to throughput and execution time.  相似文献   

12.
Current Internet of Things (IoT) development requires service distribution over Wireless Sensor and Actor Networks (WSAN) to deal with the drastic increasing of network management complexity. Because of the specific constraints of WSAN, some limitations can be observed in centralized approaches. Multi-hop communication used by WSAN introduces transmission latency, packet errors, router congestion and security issues. As it uses local services, a model of decentralized services avoids long path communications between nodes and applications. But the two main issues are then to design (1) the composition of such services and to map (2) them over the WSAN. This contribution proposes a model for decentralized services based on Resource Oriented Architecture in which their communications are designed thanks to an adaptation of Petri Network (1). In addition, the problem of decentralized service mapping and its deployment over a WSAN is successfully resumed by a Pseudo-Boolean Optimization in order to minimize network communication load (2). These contributions are presented using a proposed EMMA middleware as unifying thread.  相似文献   

13.
Wireless sensor network (WSN) technologies have enabled ubiquitous sensing to intersect many areas of modern day living. The creation of these devices offers the ability to get, gather, exchange, and consume environmental measurement from the physical world in a communicating‐actuating network, called the Internet of Things (IoT). As the number of physical world objects from heterogeneous network environments grows, the data produced by these objects raise uncontrollably, bringing a delicate challenge into scalability management in the IoT networks. Cloud computing is a much more mature technology, offering unlimited virtual capabilities in terms of storage capacity and processing power. Ostensibly, it seems that cloud computing and IoT are evolving independently on their own paths, but in reality, the integration of clouds with IoT will lead to deal with the inability to scale automatically depending on the overload caused by the drastic growth of the number of connected devices and/or by the huge amount of exchanged data in the IoT networks. In this paper, our objective is to promote the scalability management, using hybrid mechanism that will combine traffic‐oriented mechanism and resources‐oriented mechanism, with adaption actions. By the use of autonomic middleware within IoT systems, we seek to improve the monitoring components's architectural design, based on cloud computing‐oriented scalability solution. The intention is to maximize the number of satisfied requests, while maintaining at an acceptable QoS level of the system performances (RTT of the system, RAM, and CPU of the middleware). In order to evaluate our solution performance, we have performed different scenarios testbed experiments. Generally, our proposed results are better than those mentioned as reference.  相似文献   

14.
The Internet of Things (IoT) is a system that includes smart items with different sensors, advanced technologies, analytics, cloud servers, and other wireless devices that integrate and work together to create an intelligent environment that benefits end users. With its wide spectrum of applications, IoT is revolutionizing both the current and future generations of the Internet. IoT systems can be employed for broad-ranging real applications, such as agriculture, the environment, cities, healthcare, and the industrial sector. In this paper, we briefly discuss the three-tier architectural view of IoT, its different communication technologies, and the smart sensors. Moreover, we study various application areas of IoT such as the environmental domain, healthcare, agriculture, smart cities, and industrial, commercial, and general aspects. A critical analysis is shown for the existing schemes and techniques related to this work. Further, this paper addresses the basic context, tools and evaluation approaches, future scope, and the advantages and disadvantages of the aforestated IoT applications. A comprehensive analysis is provided for each domain along with its fundamental parameters like the quality of service (QoS), network longevity, scalability, energy efficiency, accuracy, and cost. Finally, this study highlights the technical challenges and open research problems existing in different IoT applications.  相似文献   

15.
Internet of Things (IoT) is a newly emerged paradigm where multiple embedded devices, known as things, are connected via the Internet to collect, share, and analyze data from the environment. In order to overcome the limited storage and processing capacity constraint of IoT devices, it is now possible to integrate them with cloud servers as large resource pools. Such integration, though bringing applicability of IoT in many domains, raises concerns regarding the authentication of these devices while establishing secure communications to cloud servers. Recently, Kumari et al proposed an authentication scheme based on elliptic curve cryptography (ECC) for IoT and cloud servers and claimed that it satisfies all security requirements and is secure against various attacks. In this paper, we first prove that the scheme of Kumari et al is susceptible to various attacks, including the replay attack and stolen-verifier attack. We then propose a lightweight authentication protocol for secure communication of IoT embedded devices and cloud servers. The proposed scheme is proved to provide essential security requirements such as mutual authentication, device anonymity, and perfect forward secrecy and is robust against security attacks. We also formally verify the security of the proposed protocol using BAN logic and also the Scyther tool. We also evaluate the computation and communication costs of the proposed scheme and demonstrate that the proposed scheme incurs minimum computation and communication overhead, compared to related schemes, making it suitable for IoT environments with low processing and storage capacity.  相似文献   

16.
Islam  Md. Motaharul  Khan  Zaheer  Alsaawy  Yazed 《Wireless Networks》2021,27(6):4331-4342

Internet of Things (IoT) refers to uniquely identifiable entities. Its vision is the world of connected objects. Due to its connected nature the data produced by IoT is being used for different purposes. Since IoT generates huge amount of data, we need some scalable storage to store and compute the data sensed from the sensors. To overcome this issue, we need the integration of cloud and IoT, so that the data might be stored and computed in a scalable environment. Harmonization of IoT in Cloud might be a novel solution in this regard. IoT devices will interact with each other using Constrained Application Protocol (CoAP). In this paper, we have implemented harmonizing IoT in Cloud. We have used CoAP to get things connected to each other through the Internet. For the implementation we have used two sensors, fire detector and the sensor attached with the door which is responsible for opening it. Thus our implementation will be storing and retrieving the sensed data from the cloud. We have also compared our implementation with different parameters. The comparison shows that our implementation significantly improves the performance compared to the existing system.

  相似文献   

17.
One of the main challenges in delivering end‐to‐end service chains across multiple software‐defined networking (SDN) and network function virtualization (NFV) domains is to achieve unified management and orchestration functions. A very critical aspect is the definition of an open, vendor‐agnostic, and interoperable northbound interface (NBI) that should be as abstract as possible and decoupled from domain‐specific data and control plane technologies. In this paper, we propose a reference architecture and an intent‐based NBI for end‐to‐end service management across multiple technological domains. The general approach is tested in a heterogeneous OpenFlow/Internet‐of‐Things (IoT) SDN test bed, where the proposed solution is applied to a rather complex service provisioning scenario spanning three different technological domains: an IoT infrastructure deployment, a cloud‐based data collection, processing, and publishing platform, and a transport domain over a geographic network interconnecting the IoT domain and the data center hosting the cloud services.  相似文献   

18.
付振华  李杰  季飞  余华 《电信科学》2021,37(7):34-39
海洋工程装备正向智能化、信息化方向发展,对海洋工程装备、海上作业平台的状态安全监控及环境监测技术提出了更高的要求。提出了一种面向海工装备智能化的海洋异构物联网架构,基于水声通信、海上无线通信及智能网关和云平台实现海上作业装备及平台的远程监控与在线监测。介绍了网络架构的主要模块、关键技术及主要挑战。该网络架构可为基于物联网实现海工设备的远程诊断,最终实现全方位智能化提供借鉴与参考。  相似文献   

19.

The Internet of Things (IoT) is a network of globally connected physical objects, which are associated with each other via Internet. The IoT foresees the interconnection of few trillions of intelligent objects around us, uniquely and addressable every day, these objects have the ability to accumulate process and communicate data about themselves and their surrounding environment. The best examples of IoT systems are health care, building smart city with advance construction management system, public and defense surveillance and data acquisition. Recent advancement in the technology has developed smart and intelligent sensor nodes and RFIDs lead to a large number of wireless networks with smart and intelligent devices (object, or things) connected to the Internet continuously transmit the data. So to provide security and privacy to this data in IoT is a very challenging task, which is to be concerned at highest priority for several current and future applications of IoT. Devices such as smart phone, WSNs and RFIDs etc., are the major components of IoT network which are basically resource constrained devices. Design and development of security and privacy management schemes for these devices is guided by factors like good performance, low power consumption, robustness to attacks, tampering of the data and end to end security. Security schemes in IoT provide unauthorized access to information or other objects by protecting against alterations or destruction. Privacy schemes maintain the right to control about the collected information for its usage and purpose. In this paper, we have surveyed major challenges such as Confidentiality, Integrity, Authentication, and Availability for IoT in a brief manner.

  相似文献   

20.
The Internet of Things (IoT) has been growing over the past few years due to its flexibility and ease of use in real-time applications. The IoT's foremost task is ensuring that there is proper communication among different types of applications and devices, and that the application layer protocols fulfill this necessity. However, as the number of applications grows, it is necessary to modify or enhance the application layer protocols according to specific IoT applications, allowing specific issues to be addressed, such as dynamic adaption to network conditions and interoperability. Recently, several IoT application layer protocols have been enhanced and modified according to application requirements. However, no existing survey articles focus on these protocols. In this article, we survey traditional and recent advances in IoT application layer protocols, as well as relevant real-time applications and their adapted application layer protocols for improving performance. As changing the nature of protocols for each application is unrealistic, machine learning offers means of making protocols intelligent and is able to adapt dynamically. In this context, we focus on providing open challenges to drive IoT application layer protocols in such a direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号