首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 732 毫秒
1.
Let k be a positive integer, and let G=(V,E) be a graph with minimum degree at least k−1. A function f:V→{−1,1} is said to be a signed k-dominating function (SkDF) if uN[v]f(u)?k for every vV. An SkDF f of a graph G is minimal if there exists no SkDF g such that gf and g(v)?f(v) for every vV. The maximum of the values of vVf(v), taken over all minimal SkDFs f, is called the upper signed k-domination numberΓkS(G). In this paper, we present a sharp upper bound on this number for a general graph.  相似文献   

2.
In 2000, Li et al. introduced dual-cube networks, denoted by DCn for n?1, using the hypercube family Qn and showed the vertex symmetry and some fault-tolerant hamiltonian properties of DCn. In this article, we introduce a new family of interconnection networks called dual-cube extensive networks, denoted by DCEN(G). Given any arbitrary graph G, DCEN(G) is generated from G using the similar structure of DCn. We show that if G is a nonbipartite and hamiltonian connected graph, then DCEN(G) is hamiltonian connected. In addition, if G has the property that for any two distinct vertices u,v of G, there exist three disjoint paths between u and v such that these three paths span the graph G, then DCEN(G) preserves the same property. Furthermore, we prove that the similar results hold when G is a bipartite graph.  相似文献   

3.
In this paper, we give a relatively simple though very efficient way to color the d-dimensional grid G(n1,n2,…,nd) (with ni vertices in each dimension 1?i?d), for two different types of vertex colorings: (1) acyclic coloring of graphs, in which we color the vertices such that (i) no two neighbors are assigned the same color and (ii) for any two colors i and j, the subgraph induced by the vertices colored i or j is acyclic; and (2) k-distance coloring of graphs, in which every vertex must be colored in such a way that two vertices lying at distance less than or equal to k must be assigned different colors. The minimum number of colors needed to acyclically color (respectively k-distance color) a graph G is called acyclic chromatic number of G (respectively k-distance chromatic number), and denoted a(G) (respectively χk(G)).The method we propose for coloring the d-dimensional grid in those two variants relies on the representation of the vertices of Gd(n1,…,nd) thanks to its coordinates in each dimension; this gives us upper bounds on a(Gd(n1,…,nd)) and χk(Gd(n1,…,nd)).We also give lower bounds on a(Gd(n1,…,nd)) and χk(Gd(n1,…,nd)). In particular, we give a lower bound on a(G) for any graph G; surprisingly, as far as we know this result was never mentioned before. Applied to the d-dimensional grid Gd(n1,…,nd), the lower and upper bounds for a(Gd(n1,…,nd)) match (and thus give an optimal result) when the lengths in each dimension are “sufficiently large” (more precisely, if ). If this is not the case, then these bounds differ by an additive constant at most equal to . Concerning χk(Gd(n1,…,nd)), we give exact results on its value for (1) k=2 and any d?1, and (2) d=2 and any k?1.In the case of acyclic coloring, we also apply our results to hypercubes of dimension d, Hd, which are a particular case of Gd(n1,…,nd) in which there are only 2 vertices in each dimension. In that case, the bounds we obtain differ by a multiplicative constant equal to 2.  相似文献   

4.
Rahman and Kaykobad proved the following theorem on Hamiltonian paths in graphs. Let G be a connected graph with n vertices. If d(u)+d(v)+δ(u,v)?n+1 for each pair of distinct non-adjacent vertices u and v in G, where δ(u,v) is the length of a shortest path between u and v in G, then G has a Hamiltonian path. It is shown that except for two families of graphs a graph is Hamiltonian if it satisfies the condition in Rahman and Kaykobad's theorem. The result obtained in this note is also an answer for a question posed by Rahman and Kaykobad.  相似文献   

5.
A vertex u in a digraph G = (VA) is said to dominate itself and vertices v such that (uv) ∈ A. For a positive integer k, a k-tuple dominating set of G is a subset D of vertices such that every vertex in G is dominated by at least k vertices in D. The k-tuple domination number of G is the minimum cardinality of a k-tuple dominating set of G. This paper deals with the k-tuple domination problem on generalized de Bruijn and Kautz digraphs. We establish bounds on the k-tuple domination number for the generalized de Bruijn and Kautz digraphs and we obtain some conditions for the k-tuple domination number attaining the bounds.  相似文献   

6.
In a graph G, a k-container Ck(u,v) is a set of k disjoint paths joining u and v. A k-container Ck(u,v) is k∗-container if every vertex of G is passed by some path in Ck(u,v). A graph G is k∗-connected if there exists a k∗-container between any two vertices. An m-regular graph G is super-connected if G is k∗-connected for any k with 1?k?m. In this paper, we prove that the recursive circulant graphs G(2m,4), proposed by Park and Chwa [Theoret. Comput. Sci. 244 (2000) 35-62], are super-connected if and only if m≠2.  相似文献   

7.
In a digraph G, a vertex u is said to dominate itself and vertices v such that (u,v) is an arc of G. For a positive integer k, a k-tuple dominating set D of a digraph is a subset of vertices such that every vertex is dominated by at least k vertices in D. The k-tuple domination number of a given digraph is the minimum cardinality of a k-tuple dominating set of the digraph. In this letter, we give the exact values of the k-tuple domination number of de Bruijn and Kautz digraphs.  相似文献   

8.
A graph G is panconnected if each pair of distinct vertices u,vV(G) are joined by a path of length l for all dG(u,v)?l?|V(G)|-1, where dG(u,v) is the length of a shortest path joining u and v in G. Recently, Fan et. al. [J. Fan, X. Lin, X. Jia, Optimal path embedding in crossed cubes, IEEE Trans. Parall. Distrib. Syst. 16 (2) (2005) 1190-1200, J. Fan, X. Jia, X. Lin, Complete path embeddings in crossed cubes, Inform. Sci. 176 (22) (2006) 3332-3346] and Xu et. al. [J.M. Xu, M.J. Ma, M. Lu, Paths in Möbius cubes and crossed cubes, Inform. Proc. Lett. 97 (3) (2006) 94-97] both proved that n-dimensional crossed cube, CQn, is almost panconnected except the path of length dCQn(u,v)+1 for any two distinct vertices u,vV(CQn). In this paper, we give a necessary and sufficient condition to check for the existence of paths of length dCQn(u,v)+1, called the nearly shortest paths, for any two distinct vertices u,v in CQn. Moreover, we observe that only some pair of vertices have no nearly shortest path and we give a construction scheme for the nearly shortest path if it exists.  相似文献   

9.
For a positive integer d, an L(d,1)-labeling f of a graph G is an assignment of integers to the vertices of G such that |f(u)−f(v)|?d if uvE(G), and |f(u)−f(v)|?1 if u and u are at distance two. The span of an L(d,1)-labeling f of a graph is the absolute difference between the maximum and minimum integers used by f. The L(d,1)-labeling number of G, denoted by λd,1(G), is the minimum span over all L(d,1)-labelings of G. An L(d,1)-labeling of a graph G is an L(d,1)-labeling of G which assigns different labels to different vertices. Denote by the L(d,1)-labeling number of G. Georges et al. [Discrete Math. 135 (1994) 103-111] established relationship between the L(2,1)-labeling number of a graph G and the path covering number of Gc, the complement of G. In this paper we first generalize the concept of the path covering of a graph to the t-group path covering. Then we establish the relationship between the L(d,1)-labeling number of a graph G and the (d−1)-group path covering number of Gc. Using this result, we prove that and for bipartite graphs G can be computed in polynomial time.  相似文献   

10.
For two distinct vertices u,vV(G), a cycle is called geodesic cycle with u and v if a shortest path of G joining u and v lies on the cycle; and a cycle C is called balanced cycle with u and v if dC(u,v)=max{dC(x,y)|x,yV(C)}. A graph G is pancyclic [J. Mitchem, E. Schmeichel, Pancyclic and bipancyclic graphs a survey, Graphs and applications (1982) 271-278] if it contains a cycle of every length from 3 to |V(G)| inclusive. A graph G is called geodesic pancyclic [H.C. Chan, J.M. Chang, Y.L. Wang, S.J. Horng, Geodesic-pancyclic graphs, in: Proceedings of the 23rd Workshop on Combinatorial Mathematics and Computation Theory, 2006, pp. 181-187] (respectively, balanced pancyclic) if for each pair of vertices u,vV(G), it contains a geodesic cycle (respectively, balanced cycle) of every integer length of l satisfying max{2dG(u,v),3}?l?|V(G)|. Lai et al. [P.L. Lai, J.W. Hsue, J.J.M. Tan, L.H. Hsu, On the panconnected properties of the Augmented cubes, in: Proceedings of the 2004 International Computer Symposium, 2004, pp. 1249-1251] proved that the n-dimensional Augmented cube, AQn, is pancyclic in the sense that a cycle of length l exists, 3?l?|V(AQn)|. In this paper, we study two new pancyclic properties and show that AQn is geodesic pancyclic and balanced pancyclic for n?2.  相似文献   

11.
A path in G is a hamiltonian path if it contains all vertices of G. A graph G is hamiltonian connected if there exists a hamiltonian path between any two distinct vertices of G. The degree of a vertex u in G is the number of vertices of G adjacent to u. We denote by δ(G) the minimum degree of vertices of G. A graph G is conditional k edge-fault tolerant hamiltonian connected if GF is hamiltonian connected for every FE(G) with |F|?k and δ(GF)?3. The conditional edge-fault tolerant hamiltonian connectivity is defined as the maximum integer k such that G is k edge-fault tolerant conditional hamiltonian connected if G is hamiltonian connected and is undefined otherwise. Let n?4. We use Kn to denote the complete graph with n vertices. In this paper, we show that for n∉{4,5,8,10}, , , , and .  相似文献   

12.
Let λ(G) be the edge connectivity of G. The direct product of graphs G and H is the graph with vertex set V(G×H)=V(GV(H), where two vertices (u1,v1) and (u2,v2) are adjacent in G×H if u1u2E(G) and v1v2E(H). We prove that λ(G×Kn)=min{n(n−1)λ(G),(n−1)δ(G)} for every nontrivial graph G and n?3. We also prove that for almost every pair of graphs G and H with n vertices and edge probability p, G×H is k-connected, where k=O(2(n/logn)).  相似文献   

13.
A vertex v of a connected graph G distinguishes a pair u, w of vertices of G if d(v, u)≠d(v, w), where d(·,·) denotes the length of a shortest path between two vertices in G. A k-partition Π={S 1, S 2, …, S k } of the vertex set of G is said to be a locatic partition if for every pair of distinct vertices v and w of G, there exists a vertex sS i for all 1≤ik that distinguishes v and w. The cardinality of a largest locatic partition is called the locatic number of G. In this paper, we study the locatic number of paths, cycles and characterize all the connected graphs of order n having locatic number n, n?1 and n?2. Some realizable results are also given in this paper.  相似文献   

14.
《国际计算机数学杂志》2012,89(9):1931-1939
Consider any undirected and simple graph G=(V, E), where V and E denote the vertex set and the edge set of G, respectively. Let |G|=|V|=n. The well-known Ore's theorem states that if degG(u)+degG(v)≥n+k holds for each pair of nonadjacent vertices u and v of G, then G is traceable for k=?1, hamiltonian for k=0, and hamiltonian-connected for k=1. Lin et al. generalized Ore's theorem and showed that under the same condition as above, G is r*-connected for 1≤rk+2 with k≥1. In this paper, we improve both theorems by showing that the hamiltonicity or r*-connectivity of any graph G satisfying the condition degG(u)+degG(v)≥n+k with k≥?1 is preserved even after one vertex or one edge is removed, unless G belongs to two exceptional families.  相似文献   

15.
In this paper, we focus on the oriented coloring of graphs. Oriented coloring is a coloring of the vertices of an oriented graph G without symmetric arcs such that (i) no two neighbors in G are assigned the same color, and (ii) if two vertices u and v such that (u,v)∈A(G) are assigned colors c(u) and c(v), then for any (z,t)∈A(G), we cannot have simultaneously c(z)=c(v) and c(t)=c(u). The oriented chromatic number of an unoriented graph G is the smallest number k of colors for which any of the orientations of G can be colored with k colors.The main results we obtain in this paper are bounds on the oriented chromatic number of particular families of planar graphs, namely 2-dimensional grids, fat trees and fat fat trees.  相似文献   

16.
A k-containerC(u,v) of a graph G is a set of k disjoint paths joining u to v. A k-container C(u,v) is a k∗-container if every vertex of G is incident with a path in C(u,v). A bipartite graph G is k∗-laceable if there exists a k∗-container between any two vertices u, v from different partite set of G. A bipartite graph G with connectivity k is super laceable if it is i∗-laceable for all i?k. A bipartite graph G with connectivity k is f-edge fault-tolerant super laceable if GF is i∗-laceable for any 1?i?kf and for any edge subset F with |F|=f<k−1. In this paper, we prove that the hypercube graph Qr is super laceable. Moreover, Qr is f-edge fault-tolerant super laceable for any f?r−2.  相似文献   

17.
Suppose the vertices of a graph G were labeled arbitrarily by positive integers, and let S(v) denote the sum of labels over all neighbors of vertex v. A labeling is lucky if the function S is a proper coloring of G, that is, if we have S(u)≠S(v) whenever u and v are adjacent. The least integer k for which a graph G has a lucky labeling from the set {1,2,…,k} is the lucky number of G, denoted by η(G).Using algebraic methods we prove that η(G)?k+1 for every bipartite graph G whose edges can be oriented so that the maximum out-degree of a vertex is at most k. In particular, we get that η(T)?2 for every tree T, and η(G)?3 for every bipartite planar graph G. By another technique we get a bound for the lucky number in terms of the acyclic chromatic number. This gives in particular that for every planar graph G. Nevertheless we offer a provocative conjecture that η(G)?χ(G) for every graph G.  相似文献   

18.
A k -container C(u,v) of a graph G is a set of k disjoint paths between u and v. A k-container C(u,v) of G is a k * -container if it contains all vertices of G. A graph G is k * -connected if there exists a k *-container between any two distinct vertices of G. Therefore, a graph is 1*-connected (respectively, 2*-connected) if and only if it is Hamiltonian connected (respectively, Hamiltonian). A graph G is super spanning connected if there exists a k *-container between any two distinct vertices of G for every k with 1≤kκ(G) where κ(G) is the connectivity of G. A bipartite graph G is k * -laceable if there exists a k *-container between any two vertices from different partite set of G. A bipartite graph G is super spanning laceable if there exists a k *-container between any two vertices from different partite set of G for every k with 1≤kκ(G). In this paper, we prove that the enhanced hypercube Q n,m is super spanning laceable if m is an odd integer and super spanning connected if otherwise.
Chung-Hao ChangEmail:
  相似文献   

19.
The Möbius cube MQn and the crossed cube CQn are two important variants of the hypercube Qn. This paper shows that for any two different vertices u and v in G∈{MQn,CQn} with n?3, there exists a uv-path of every length from dG(u,v)+2 to n2−1 except for a shortest uv-path, where dG(u,v) is the distance between u and v in G. This result improves some known results.  相似文献   

20.
《国际计算机数学杂志》2012,89(10):2026-2034
Let G be a connected graph with diameter diam(G). The radio number for G, denoted by rn(G), is the smallest integer k such that there exists a function f: V(G)→{0, 1, 2, …, k} with the following satisfied for all vertices u and v:|f(u)?f(v)|≥diam (G)?d G (u, v)+1, where d G (u, v) is the distance between u and v in G. In this paper, we determine the radio number of ladder graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号