首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The electrical conductivity and electromagnetic interference (EMI) shielding effectiveness of the composites of polypropylene/poly(lactic acid) (PP/PLA) (70/30, wt %) with single filler of multiwall carbon nanotube (CNT) or hybrid fillers of nickel‐coated carbon fiber (CF) and CNT were investigated. For the single filler composite, higher electrical conductivity was observed when the PP‐g‐maleic anhydride was added as a compatibilizer between the PP and PLA. For the composite of the PP/PLA (70/30)/CF (20 phr)/CNT (5 phr), the composite prepared by injection molding observed a higher EMI shielding effectiveness of 50.5 dB than the composite prepared by screw extrusion (32.3 dB), demonstrating an EMI shielding effectiveness increase of 49.8%. The higher values in EMI shielding effectiveness and electrical conductivity of the PP/PLA/CF (20 phr)/CNT (5 phr) composite seemed mainly because of the increased CF length when the composites were prepared using injection molding machine, compared with the composites prepared by screw extrusion. This result suggests that the fiber length of the conductive filler is an important factor in obtaining higher values of electrical conductivity and EMI shielding effectiveness of the PP/PLA/CF/CNT composites. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45222.  相似文献   

2.
The effect of carbon fiber (CF) modification with multiwall carbon nanotube (CNT) on the electrical, mechanical, and rheological properties of the polycarbonate (PC)/CF/CNT composite was investigated. The CF and multiwall CNT (MWCNT) were treated with sulfuric acid and nitric acid (3:1 wt %) mixture, to modify the CF with the CNT. For the PC with acid-treated CNT (a-CNT) modified acid-treated CF (a-CF) (PC/a-CF/a-CNT) composite, the electrical conductivity, and the electromagnetic interference shielding effectiveness (EMI SE) showed the highest values, compared with those of the PC/a-CF and PC/a-CF/CNT composites. The EMI SE of the PC/a-CF (10 wt %)/a-CNT (0.5 wt %) composite was found to be 26 (dB at the frequency of 10.0 GHz, and the EMI SE was increased by 91.2%, compared to that of the PC/a-CF composite at the same amount of total filler content. Among the composites studied in this work, the PC/a-CF/a-CNT composite also showed the highest values of relative permittivity (εr) and dielectric loss factor. The above results suggest that the CF modification with the a-CNT significantly affected the electrical conductivity and EMI SE of the composite, and the hybrid fillers of the a-CNT and a-CF resulted in good electrical pathways in the PC/a-CF/a-CNT composite. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47302.  相似文献   

3.
Polymeric electromagnetic interference (EMI) shielding foaming materials are found and applied in many frontier fields such as aerospace, transportation, and portable electronics. In this paper, a foam based on a composite system of poly(vinylidene fluoride) (PVDF) filled with carbon nanotubes (CNTs) is prepared for EMI shielding properties by using a solid-state supercritical CO2 foaming strategy. PVDF is chosen as the matrix because of its excellent chemical resistance, thermal stability, and flame retardancy. The inclusion of CNTs renders this composite system enhanced complex viscosity and storage modulus by about two orders of magnitude. The electrical conductivity and EMI specific shielding effectiveness of obtained foams can be adjusted and reached the optimum value of 0.024 S m−1 and 29.1 dB cm3 g−1, respectively, originating from the gradual development of interconnected CNTs and conductive CNTs network as well as the introduction of cell structure in PVDF matrix. Interestingly, the reorientation of CNTs caused by foaming process results in electrical conductivity percolation threshold of PVDF/CNTs foams markedly decreases, in comparison to their unfoamed samples. This study provides a facile, efficient, green, and economic route for the preparation of EMI shielding foams consisted of fluorinated polymers and carbonaceous fillers.  相似文献   

4.
Ji Sun Im 《Carbon》2009,47(11):2640-3468
Electrospinning and heat treatment were carried out to get nano sized carbon fibers (CFs) as a matrix for shielding the electromagnetic interference (EMI). In order to improve the electrical conductivity and EMI shielding efficiency of electrospun CFs, carbon black (CB) was fluorinated and embedded into the electrospun CFs. Electrospun fiber sheets embedded fluorinated CB were heat-treated at different temperatures to determine the effects on electrical properties. It is demonstrated that fluorination treatment of CB and heat treatment of electrospun sheets at higher temperature lead to higher electrical conductivities and EMI shielding efficiencies, because fluorination significantly improved its dispersion in electrospun CF webs and created good adhesion between the CB and the CFs. The electrical conductivity of carbon composite sheets (webs) reached ∼38 S/cm, and a high EMI shielding efficiency was obtained (∼50 dB).  相似文献   

5.
This study compares electromagnetic interference (EMI) shielding properties of injection molded versus compression molded multi-walled carbon nanotube/polystyrene (MWCNT/PS) composites, i.e., properties such as EMI shielding effectiveness (EMI SE), electrical conductivity, real permittivity and imaginary permittivity. The injection molded (MWCNT-aligned) samples showed lower EMI shielding properties than compression molded (randomly distributed MWCNT) samples that was attributed to lower probability of MWCNTs contacting each other due to MWCNT alignment. The compression molded samples showed higher electrical conductivity and lower electrical percolation threshold than the injection molded samples. The compression molded samples at MWCNT concentrations of 5.00 and 20.0 wt.% showed real permittivity two times and imaginary permittivity five times greater than the injection molded samples. The EMI SE for the compression molded samples at MWCNT concentrations of 5.00 and 20.0 wt.% was 15.0 and 30.0 dB, respectively, significantly greater than EMI SE for the injection molded samples. Lower EMI SE for the injection molded samples was ascribed to lower electrical conductivity, real permittivity (polarization loss) and imaginary permittivity (Ohmic loss). Comparison of the EMI shielding properties of the compression molded versus injection molded samples confirmed that EMI shielding does not require filler connectivity; however it increases with filler connectivity.  相似文献   

6.
Electromagnetic shielding materials play a significant role in solving the increasing environmental problem of electromagnetic pollutions. The commonly used metal‐based electromagnetic materials suffer from high density, poor corrosion resistance, and high processing cost. Polymer composites exhibit unique combined properties of lightweight, good shock absorption, and corrosion resistance. In this study, a novel high angle sensitive composite is fabricated by combining carbon fiber (CF) fabric with thermoplastic polyurethane elastomer (TPU). The effect of stacking angle of CF fabric on EMI shielding performance of composite is studied. When the stacking angle of CF fabric changed, the electromagnetic interference (EMI) shielding effectiveness (SE) of CF fabric/TPU composite can reach a maximum of 73 dB, and the tensile strength can reach 168 MPa. In addition, the composite has anisotropic conductivity, which is conductive along the plane direction and nonconductive along the thickness direction. Moreover, the CF fabric/TPU composite manifests exceptional EMI‐SE/density/thickness value of 383 dB cm2 g?1, which is higher than most of current EMI shielding composites reported in literature. In summary, CF fabric/TPU composite is an excellent EMI shielding material that is lightweight, highly flexible, and mechanically robust, which can be applied to the field of aerospace and some intelligent electronic devices.  相似文献   

7.
The present research focuses on the preparation of an efficient material that acts as a deterrent to electromagnetic pollution. In this study, graphite and carbon fiber (CF) reinforced polypropylene (PP) composites (GCF) are prepared using a melt processing technique via a twin-screw extruder. The prepared composites were evaluated for mechanical, thermal, DC conductivity, and EMI shielding properties. There is a rise in the tensile strength (4.32%) and thermal stability (6.57%) of composites were recorded as compared to pure PP. The fractured morphology of the composites showed the breakdown of CF, leading to the improvement in the tensile strength of the composites. An increase in electrical conductivity was seen at maximum (GCF4) filler loading indicating 2.31 × 10?4 S/cm which is much better than the pure PP value (2.07 × 10?10 S/cm). The maximum value of shielding effectiveness is achieved at the maximum weight percentage of filler loading which is ?44.43 dB with a thickness of 2 mm covering the X-band (8.2–12.4 GHz).  相似文献   

8.
A facile and economic method is developed for the fabrication of new lightweight materials with high electromagnetic interference (EMI) shielding performance, good mechanical properties and low electrical percolation threshold through melt mixing. Electrical properties, DC conductivity, EMI shielding performance and mechanical properties of poly(trimethylene terephthalate) (PTT)/multiwalled carbon nanotube (MWCNT) nanocomposites with varying filler loading of MWCNTs were investigated. High‐resolution transmission electron microscopy was used to determine the distribution of MWCNTs in the PTT matrix. The newly developed nanocomposites show excellent dielectric and EMI shielding properties. Theoretical electrical percolation threshold was achieved at 0.21 wt% loading of MWCNTs, due to the high aspect ratio and the three‐dimensional network formation of MWCNTs. Experimental DC conductivity values were compared with those of theoretical models such as the Voet, Bueche and Scarisbrick models, which showed good agreement. The PTT/3% MWCNT composite showed an EMI shielding value of ~38 dB (99.99% attenuation) with a sample thickness of 2 mm. Power balance was used to determine the actual contribution of reflection, absorption and transmission loss to the total EMI shielding value. The nanocomposites showed good tensile and impact properties and the composite with 2% MWCNTs exhibited an improvement in tensile strength of as much as 96%. © 2018 Society of Chemical Industry  相似文献   

9.
Multilayer graphene/polymer composite films with good mechanical flexibility were fabricated into paraffin-based sandwich structures to evaluate electromagnetic interference (EMI) shielding. Experimental results showed the relationship between electrical properties and shielding performance, demonstrating that electrical properties are significant factors in EMI shielding. Calculation based on electrical conductivity of the composite films was carried out to investigate the fundamental mechanisms of absorption, reflection and multiple-reflections for the polymeric graphene composite films. Both experimental and calculated results indicate that reflection is the dominating shielding mechanism for the as-fabricated polymeric graphene films. The optimization of thickness, skin depth and electrical conductivity in the shielding materials could be highly significant in achieving enhanced EMI shielding. Further improvement in absorption shielding has been achieved by increasing the shielding thickness in order to enhance the overall shielding performance. The optimized shielding effectiveness up to 27 dB suggested effective shielding of the composite films. The implication of the mechanisms for optimizing shielding performance demonstrates significant fundamental basis for designing high-performance EMI shielding composites. The results and techniques also promise a simple and effective approach to achieve light-weight graphene-based composite films for application potentials in EMI shielding coatings.  相似文献   

10.
Lightweight plastic foams are of great significance for saving resources and reducing energy consumption. Foam injection molding (FIM) shows a promising future to provide lightweight and shape‐complex plastic components. However, it is still challenging to produce lightweight and strong polypropylene (PP) foams by FIM due to PP's poor foaming ability. Herein, rubber and talc are employed to improve PP's foaming ability, and hence to enhance PP foam's mechanical properties. Due to the significantly enhanced rheological properties, injection molded PP composite foam exhibits greatly refined and homogenized cellular structure compared with pure PP foam. Thanks to rubber toughening effect and improved cellular morphology, PP/rubber foam shows much higher ductility than pure PP foam. Moreover, talc particles lead to remarkably enhanced rigidity of PP/rubber foams. Thus, lightweight and strong PP/rubber/talc composite foam is achieved with tensile toughness increased by 82.58% and impact strength increased by 106.21%, and they show broad industrial application prospects.  相似文献   

11.
采用碳纤维(CF)和碳纳米管(CNT)通过模压工艺制备出具有电磁屏蔽功能的丙烯酸酯木塑复合材料。借助材料试验机、动态热机械分析仪、微欧计和电磁屏蔽测量仪等详细研究CNT质量分数对丙烯酸酯木塑复合材料弯曲性能、动态力学性能、电阻率和电磁屏蔽效能的影响。结果表明,添加质量分数为2%的CNT,使得复合材料的弯曲强度和弯曲弹性模量分别增加了10%和16%。复合材料的储能模量也在CNT质量分数为2%时达到最大值,之后储能模量随着CNT的增加而逐渐下降,损耗因子在CNT质量分数多于2%时也逐渐增加。复合材料的吸水率和导电性能随着CNT含量的增加而增加。同时复合材料的电磁屏蔽效能也随着CNT含量增加而递增。在30~1 500 MHz范围内,电磁屏蔽效能从27 d B增加到40 d B。结果证明,当CNT质量分数在2%时,丙烯酸酯木塑复合材料具有较佳的力学性能和较好的电磁屏蔽效能(30 d B),能满足商业要求。  相似文献   

12.
Electromagnetic interference (EMI) is an increasingly severe issue in modern life and high-performance EMI shielding materials are in desperate need. To achieve high EMI shielding effectiveness (EMI SE), a series of polybenzoxazine/graphene composites foams are developed using a simple sol–gel method. When the graphene loading increases from 1 to 20 wt%, the density of the composites foams drops from 0.4143 g/cm3 to 0.1654 g/cm3. Meanwhile, an electrically conductive path is formed at around 7 wt% of graphene. Below the percolation threshold, the dielectric constant increases with graphene content and composite foam with 5 wt% graphene shows dielectric constant of 10.8 (1 MHz). At the highest graphene content of 20 wt%, the electric conductivity reaches 0.02 S/cm, 10 orders of magnitude higher than pure polybenzoxazine foam. Benefiting from the high electrical conductivity and lightweight porous structure, the composite foam PF/20G delivers an EMI SE of 85 dB and a specific SE of 513.9 dB·cm3/g. Importantly, the EMI shielding is dominated by absorption attenuation, with PF/20G shows absorption ratio higher than 98% in the range of 8.4–11.0 GHz, which is believed to be caused by multiple internal reflection and absorption inside the conductive foam.  相似文献   

13.
Mechanical properties and electrical conductivity of discontinuous stainless steel fiber (SSF) filled polypropylene (PP) composites were considered as candidates for shielding electromagnetic interference (EMI) applications. In order to improve the unsatisfied impact resistance, surface treatments of SSF and modified PP were introduced. By means of a microdroplet pull-out test, polypropylene grafted maleic anhydride copolymer (PP-g-MAH) was found to be able to enhance the poor interfacial adhesion between fiber and matrix. On this basis, PP-g-MAH was used to prepare conventional composites, and the macromechanical measurements showed evidence that PP-g-MAH helped increase both flexural and impact strength of the composites. However, the good affinity of PP-g-MAH for SSF reduced composite conductivity accordingly. Finally, blends of PP and PP-g-MAH proved to be a solution for the problem, i.e., the impact strength was increased significantly while acceptable electrical resistivity was maintained.  相似文献   

14.
This article presents the effect of exfoliation, dispersion, and electrical conductivity of graphene sheets onto the electrical, electromagnetic interference (EMI) shielding, and gas barrier properties of thermoplastic polyurethane (TPU) based nanocomposite films. The chemically reduced graphene (CRG) and thermally reduced/annealed graphene (TRG) having Brunauer–Emmett–Teller surface areas of 18.2 and 159.6 m2/g, respectively, when solution blended with TPU matrix using N,N-dimethylformamide as a solvent. Graphene sheets based TPU nanocomposites have been evaluated and compared for EMI shielding in Ku band, electrical conductivity, and gas barrier property. TRG/TPU nanocomposite films showed excellent gas barrier against N2 gas as compared to CRG/TPU. The EMI shielding effectiveness for neat CRG and TRG graphene sheets is found to be −80, −45 dB, respectively, at 2 mm thickness. The EMI shielding data revealed that TRG/TPU nanocomposites showed better shielding at lower concentration (10 wt %), while CRG displayed better attenuation at higher concentrations. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47666.  相似文献   

15.
In this study, a lightweight microcellular carbon-based filler/poly(vinylidene fluoride) (PVDF) composite foam is fabricated with a 3D conductive network that is thermally insulating, electrically conductive, and fabricated on a large scale. This composite can be used for high-efficiency thermal insulation and electromagnetic interference (EMI) shielding applications. The prepared composite demonstrates low density, high electrical conductivity, and excellent thermal insulation properties. The structure and density of the conductive network and the carbon-based filler content has a significant influence on the electrical conductivity of the prepared composite foam. Although the composite comprises microcellular PVDF beads of the same density, the conductivity of the composite-comprising strip beads is greater than that comprising spherical beads. In the same conductive network structure, as the size of the microcellular PVDF beads decrease, the conductive network becomes denser, which results in a higher conductivity. Furthermore, with an increase in the conductive filler content, the conductivity improves significantly. Excellent EMI shielding materials with optimal filler content and particle shapes, exhibiting EMI shielding effectiveness of up to 40–50 dB, are developed. The prepared composite foam possesses excellent application potential in the fields of ultra-light thermal insulation, conductivity, and EMI shielding.  相似文献   

16.
Limeng Chen 《Polymer》2010,51(11):2368-23
Polymer nanocomposite foams, products from the foaming of polymer nanocomposites, have received increasing attention in both the scientific and industrial communities. Nanocomposite foams filled with carbon nanofibers or carbon nanotubes with high electrical conductivity, enhanced mechanical properties, and low density are potential effective electromagnetic interference (EMI) shielding materials. The EMI shielding efficiency depends on the electrical conductivity and bubble density, which in turn, depend on the properties of the filler. In the current study, multi walled carbon nanotubes (MWNT) with controlled aspect ratio were used to alter the bubble density in MWNT/poly(methyl methacrylate) (PMMA) nanocomposites. It was found that the nanocomposite foams filled with shorter MWNT had higher bubble density under the same foaming conditions and MWNT concentration. Both the ends and sidewalls of carbon nanotubes can act as heterogeneous bubble nucleation sites, but the ends are more effective compared to the sidewalls. Shorter nanotubes provide more ends at constant MWNT concentration compared to long nanotubes. As a result, the difference in the foam morphology, particularly the bubble density, is due to the difference in the number of effective bubble nucleation sites.  相似文献   

17.
The effects of hybrid fillers of carbon fiber (CF) and multiwall carbon nanotube (MWCNT) on the electrical conductivity, electromagnetic interference shielding effectiveness (EMI SE), flame retardancy, and mechanical properties of poly(butylene terephthalate) (PBT)/poly(acrylonitrile-co-styrene-co-acrylate) (PolyASA) (70/30, wt %) with conductive filler composites were investigated. The CF was used as the main filler, and MWCNT was used as the secondary filler to investigate the hybrid filler effect. For the PBT/PolyASA/CF (8 vol %)/MWCNT (2 vol %) composite, a higher electrical conductivity (1.4 × 100 S cm−1) and EMI SE (33.7 dB) were observed than that of the composite prepared with the single filler of CF (10 vol %), which were 9.0 × 10−2 S cm−1 and 23.7 dB, respectively. This increase in the electrical properties might be due to the longer CF length and hybrid filler effect in the composites. From the results of aging test at 85 °C, 120 h, the electrical conductivity and EMI SE of the composites decreased slightly compared to that of the composite without aging. The results of electrical conductivity, EMI SE, and flame retardancy suggested that the composite with the hybrid fillers of CF and MWCNT showed a synergetic effect in the PBT/PolyASA/CF (8 vol %)/MWCNT (2 vol %) composite. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48162.  相似文献   

18.
The length of multi-walled carbon nanotubes (MWCNT) has an important influence on the properties of polymer/MWCNT composites. This study aims to examine the influence of the length of MWCNT on the mechanical properties, distribution, melting and crystallization behavior, and electromagnetic interference shielding effectiveness (EMI SE) of PP/MWCNT composites. The test results show that MWCNT of a short length contribute to better mechanical properties and have a better dispersion in the matrix. MWCNT also serve as a nucleating agent for PP, thereby increasing the crystallization temperature (Tc). In particular, short MWCNT provide PP/MWCNT composites with a greater degree of cyrstallinity. The conjunction of 8 wt% long MWCNT in PP/MWCNT composites results in an optimal electrical resistivity of 65.02 Ω-cm, and an average EMI SE of ?29.47 dB. The polymer/MWCNT composites have properties that can be adjusted by using different lengths of MWCNT, which is advantageous for application in diverse products.  相似文献   

19.
Employing microcellular injection molding technology, carbon fiber (CF)/polypropylene (PP) composite foams have been prepared. The influences of injection molding conditions and CF amounts relating to the flexural and impact performances have also been studied. X-ray computed tomography scanning has been used for morphological observation. For the flexural specimens, although the solid skin and foamed core layers can be confirmed significantly, the intermediate layer is indistinct. Moreover, the stretched cells can be confirmed dramatically for the Charpy impact specimens. The cell density increases to 12.0 × 103 cell/cm2 when the nitrogen content is 1%. By contrast, the cell densities decrease with the injection speed and CF content increasing accordingly. Further, the maximum specific flexural modulus and Charpy impact strength of the foams can achieve 14 GPa/(g/cm3) and 6.2 kJ/m2, respectively, at the CF content of 30 wt%. Finally, the microcellular structure with the highest cell density can be confirmed with the nitrogen content of 1 wt%, the injection speed of 50 mm/s and the CF content of 10 wt%. Obviously, the CF contents have shown strong influences on the mechanical behaviors of the CF/PP composite foams compared with nitrogen contents or injection speeds.  相似文献   

20.
The morphological, electrical, and thermal properties of polyurethane foam (PUF)/single conductive filler composites and PUF/hybrid conductive filler composites were investigated. For the PUF/single conductive filler composites, the PUF/nickel‐coated carbon fiber (NCCF) composite showed higher electrical conductivity and electromagnetic interference shielding effectiveness (EMI SE) than did the PUF/multiwall carbon nanotube (MWCNT) and PUF/graphite composites; therefore, NCCF is the most effective filler among those tested in this study. For the PUF/hybrid conductive fillers PUF/NCCF (3.0 php)/MWCNT (3.0 php) composites, the values of electrical conductivity and EMI SE were determined to be 0.171 S/cm and 24.7 dB (decibel), respectively, which were the highest among the fillers investigated in this study. NCCF and MWCNT were the most effective primary and secondary fillers, and they had a synergistic effect on the electrical conductivity and EMI SE of the PUF/NCCF/MWCNT composites. From the results of thermal conductivity and cell size of the PUF/conductive filler composites, it is suggested that a reduction in cell size lowers the thermal conductivity of the PUF/conductive filler composites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44373.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号