首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 528 毫秒
1.
Morphological, melt rheological and dynamic mechanical properties of low-density polyethylene (LDPE)/ethylene–octene copolymer (POE)/organo-montmorillonite (OMMT) nanocomposites, prepared via melt compounding were studied. The XRD traces indicated different levels of intercalated structures for the nanocomposites. Addition of a compatibilizer (PE-g-MA) improved the intercalation process. TEM results revealed existence of clay layers in both phases but they were mainly localized in the elastomeric POE phase. Addition of 5 wt% OMMT to the LDPE/POE blend led to reduction in the size of the elastomer particles confirmed by AFM. The complex viscosity and storage modulus showed little effect of the presence of the clay when no compatibilizer was added. As the extent of exfoliation increased with addition of compatibilizer, the linear viscoelastic behavior of the composites gradually changed specially at low-frequency regions. The interfacially compatibilized nanocomposites with 5 wt% OMMT had the highest melt viscosity and modulus among all the studied nanocomposites and blends. Also, this particular composition showed the best improvement in dynamic storage modulus. The results indicated that clay dispersion and interfacial adhesion, and consequently different properties of LDPE/POE/clay nanocomposites, are greatly affected by addition of compatibilizer.  相似文献   

2.
In this study, immiscible polypropylene/poly(butylene succinate) (PP/PBS) blend-based nanocomposites were successfully prepared using an internal mixer. Carbon nanotube (CNT)/organo-montmorillonite (15A) and maleated PP (PPgMA) served as the reinforcing nanofillers and compatibilizer, respectively. Scanning electron microscopy results showed that PPgMA played an efficient role as compatibilizer for reducing the dispersed domain size of PBS in the blend. The added CNT was randomly distributed within the PP and PBS phases, whereas 15A was selectively located in the PBS domain. Differential scanning calorimetry results confirmed the nucleation effect of CNT on the PP/PBS crystallization, but 15A addition only facilitated the PBS crystallization. Thermogravimetric analysis revealed that CNT and 15A both enhanced the thermal stability of the blend under air environment. The rheological property measurements confirmed the significant change in microstructure of composites through developing the pseudo-network structure with CNT and/or 15A additions. The Young’s modulus (YM) of PP/PBS blend increased evidently with the inclusion of CNT. The incorporation of 2.5 phr CNT evidently increased the YM by approximately 243% compared with that of neat PBS. The electrical resistivity of the samples drastically reduced with the addition of CNT up to 10 orders of drop at a 3-phr CNT loading. The electrical percolation was constructed at a CNT content of 0.5 phr.  相似文献   

3.
The mechanical and thermomechanical properties as well as microstructures of polypropylene/nylon 6/clay nanocomposites prepared by varying the loading of PP‐MA compatibilizer and organoclay (OMMT) were investigated. The compatibilizer PP‐MA was used to improve the adhesion between the phases of polymers and the dispersion of OMMT in polymer matrix. Improvement of interfacial adhesion between the PP and PA6 phases occurred after the addition of PP‐MA as confirmed by SEM micrographs. Moreover, as shown by the DSC thermograms and XRD results, the degree of crystallinity of PA6 decreased in the presence of PP‐MA. The presence of OMMT increased the tensile modulus as a function of OMMT loading due to the good dispersion of OMMT in the matrix. The insertion of polymer chains between clay platelets was verified by both XRD and TEM techniques. The viscosity of the nanocomposites decreased as PP‐MA loading increased due to the change in sizes of PA6 dispersed phase, and the viscosity increased as OMMT loading increased due to the interaction between the clay platelets and polymer chains. The clay platelets were located at the interface between PP and PA6 as confirmed by both SEM and TEM. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

4.
Polypropylene/organic‐montmorillonite (PP/OMMT) nanocomposites were prepared via a solid‐phase PP graft (TMPP) with a higher grafting level as the compatibilizer. The effects of the compatibilizer on the structure and properties of PP/OMMT nanocomposites were investigated. The structure of the nanocomposites were characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results showed that when the weight ratio of TMPP and OMMT is greater than 1:1, the OMMT can be dispersed in PP matrix uniformly at the nanoscale. The mechanical properties of the nanocomposites reached a maximum when the weight ratio of TMPP and OMMT is 1:1, although more uniform dispersion was achieved at a higher content of TMPP. The mechanical properties of the nanocomposites decrease with the content of TMPP. The crystallization behavior, dynamic rheological property, and thermal stability of the nanocomposites were investigated by differential scanning calorimetry (DSC), dynamic rheological analysis, and thermal gravimetric analysis (TGA), respectively. Due to the synergistic effects of TMPP and OMMT on the crystallization of PP, the crystallization peak temperature of the nanocomposites increased remarkably compared with that of the neat PP. TMPP shows β‐phase nucleating ability and OMMT promotes the development of β‐phase crystallite. The nanocomposites show restricted melt flow and enhanced temperature sensitivity compared with the neat PP. The thermal stability of the nanocomposites is obviously improved compared with that of the neat PP. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers.  相似文献   

5.
A new toughened polypropylene (PP)/organophilic montmorillonite (OMMT) nanocomposite was obtained by melt intercalation extrusion in a twin‐screw extruder without any compatibilizer. The nanocomposites were characterized by transmission electron microscopy (TEM) observation, melt flow rate (MFR) testing, mechanical properties measurement, melting and crystallization behaviors, and thermal stability determination. TEM images revealed the existence of intercalated OMMT layers dispersed throughout the PP matrix. A clear reduction in MFR was observed as the OMMT content increased. The yield strength, elongation at yield, and initial modulus of the PP/OMMT nanocomposites increased slightly as the result of the reinforcement of the OMMT nanofiller. The ultimate value of notched impact strength of the nanocomposites was over twofold that of neat PP after incorporation with 4 wt % OMMT; meanwhile, the heat deflection temperature values showed that the thermal stability increased a little. This is a new approach for preparation for the production of a toughened PP material with a high thermal stability and rigidity. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

6.
Superior impact properties were obtained when maleic anhydride grafted styrene ethylene/butylene styrene block copolymer (SEBS-g-MAH) was used as a compatibilizer in blends of polyamide 6 (PA 6) and isotactic polypropylene (PP), where polyamide was the majority phase and polypropylene the minority phase. The optimum impact properties were achieved when the weight relation PA:PP was 80:20 and 10 wt% SEBS-g-MAH was added. The blend morphology was systematically investigated. Transmission electron microscopy (TEM) indicated that the compatibilizer forms a cellular structure in the PA phase in addition to acting as an interfacial agent between the two polymer phases. In this cellular-like morphology the compatibilizer appears to form the continuous phase, while polyamide and polypropylene form separate dispersions. In microscopy, PA appeared as a fine dispersion and PP as a coarse dispersion. The mechanical properties indicated that in fact PA, too, is continuous, and the blend can be interpreted as possessing a modified semi-interpenetrating network (IPN) structure with separate secondary dispersion of PP. The coarser PP dispersion plays an essential role in impact modification. Binary blends of the compatibilizer and one blend component were also investigated separately. The same cellular structure was observed in the binary PA/SEBS-g-MAH blends, and SEBS-g-MAH again appeared to form the continuous phase when the elastomer concentration was at least 10 to 20 wt%. By contrast, in PP/SEBS-g-MAH only conventional dispersion of elastomeric SEBS-g-MAH was observed up to 40 wt% elastomer. Impact strength was improved and the elastic modulus was lowered in both PA/SEBS-g-MAH and PP/SEBS-g-MAH blends when the elastomer content was increased. The changes in modulus indicate that the semi-IPN-like structure is formed in the binary PA/SEBS-g-MAH blends as well as in the ternary structure.  相似文献   

7.
梁玉蓉  谭英杰 《化工学报》2008,59(6):1571-1577
采用熔体插层法制备聚丙烯(PP)/有机黏土(OMMT)纳米复合材料。XRD和TEM的测试结果表明,采用熔体插层法制备的PP/OMMT复合材料是剥离型纳米复合材料。力学性能实验结果表明,相容剂的加入提高了PP与OMMT之间的相互作用,使其各项力学性能都得到了提高;PP/OMMT纳米复合材料的各项力学性能在有机黏土含量较小的情况下,就可以有较大幅度的提高;与纯PP相比,相容剂含量为10 phr、有机黏土用量为1 phr的聚丙烯基纳米复合材料具有最好的各项力学性能。  相似文献   

8.
This paper reports on morphology, rheology and dynamic mechanical properties of polypropylene (PP)/ethylene vinyl acetate (EVA) copolymer/clay nanocomposite system prepared via a single step melt compounding process using a twin screw micro-compounder. Scanning electron microscopic (SEM) investigations revealed that the dispersed phase droplet size was reduced with incorporation of an organo-modified montmorillonite (OMMT). This reduction was more significant in presence of a maleated PP (PP-g-MAH) used as compatibilizer. Phase inversion in the compatibilized blends caused a further decrease in PP droplet size. The OMMT gallery spacing was higher in nanocomposites with EVA as matrix which could be attributed to higher tendency of OMMT nanoparticles towards EVA rather than PP. This enhanced tendency was confirmed by rheological analysis too. Transmission electron microscopy (TEM) results also showed that the majority of OMMT nanoparticles were localized on the interface and within EVA droplets. According to dynamic mechanical analysis, the compatibilized nanocomposites showed higher storage and loss moduli due to better dispersion of OMMT layers. The modulus enhancement of nanocomposites as a function of OMMT volume fraction was modeled by Halpin-Tsai’s-Nielsen expression of modulus for nanocomposites. The results of modeling suggested that the aspect ratio of the intercalated OMMT, in the form of Einstein coefficient (K E), plays a determining role in the modulus enhancement of nanocomposites.  相似文献   

9.
Polyamide 6/polypropylene (PA6/PP = 70/30 parts) blends containing 4 phr (parts per hundred resin) of organophilic montmorillonite (OMMT) were prepared by melt compounding. The sodium montmorillonite (Na‐MMT) was modified using three different types of alkyl ammonium salts, namely dodecylamine, 12‐aminolauric acid, and stearylamine. The effect of clay modification on the morphological and mechanical properties of PA6/PP nanocomposites was investigated using x‐ray diffraction (XRD), transmission electron microscopy (TEM), tensile, flexural, and impact tests. The thermal properties of PA6/PP nanocomposites were characterized using thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), and heat distortion temperature (HDT). XRD and TEM results indicated the formation of exfoliated structure for the PA6/PP nanocomposites prepared using stearylamine modified montmorillonite. On the other hand, a mixture of intercalated and exfoliated structures was found for the PA6/PP nanocomposites prepared using 12‐aminolauric acid and dodecylamine modified montmorillonite. Incorporation of OMMT increased the stiffness but decreased the ductility and toughness of PA6/PP blend. The PA6/PP nanocomposite containing stearylamine modified montmorillonite showed the highest tensile, flexural, and thermal properties among all nanocomposites. This could be attributed to better exfoliated structure in the PA6/PP nanocomposite containing stearylamine modified montmorillonite. The storage modulus and HDT of PA6/PP blend were increased significantly with the incorporation of both Na‐MMT and OMMT. The highest value in both storage modulus and HDT was found in the PA6/PP nanocomposite containing stearylamine modified montmorillonite due to its better exfoliated structure. POLYM. COMPOS., 31:1156–1167, 2010. © 2009 Society of Plastics Engineers  相似文献   

10.
《Polymer Composites》2017,38(4):699-707
This study concentrates on the effect of organophilic montmorillonite (OMMT) nanolayers on conductivity, structure, morphology, and mechanical properties of the polypropylene/polyaniline (PP/PANI) composites. The composite was prepared by in situ polymerization of aniline at different composition ratios in the presence of PP powder. The structure and conductivity of ternary PP/PANI/OMMT nanocomposites were compared with those of PP/PANI composites. DC electrical conductivity measurements indicated that electrical conductivity decreased in the presence of OMMT layers. Scanning electron microscopy showed that the surface of ternary nanocomposites have more rough regions. The interaction between PANI and OMMT was confirmed by Fourier transform infrared spectroscopy. The distribution of OMMT layers in the polymer matrix, as an effective parameter on the properties of nanocomposite, was investigated and confirmed using X‐ray diffraction and transmission electron microscopy. The results showed an exfoliated array for OMMT layers in the nanocomposite structure. The shear storage modulus for PP/PANI composites was lower than that for pure PP; however, it was increased for PP/PANI/OMMT nanocomposites. The data from the tensile and izod impact strength showed that the Young's modulus and izod impact strength were increased slightly by the addition of OMMT, whereas the elongation at break was decreased. POLYM. COMPOS., 38:699–707, 2017. © 2015 Society of Plastics Engineers  相似文献   

11.
The aim of the work is to extract, purify, and organically modify montmorillonite (MMT) of Lahad Datu, Sabah bentonite. The octadecylamine treated Sabah MMT (S‐OMMT) (2–8 wt%) was then melt blended with polypropylene (PP) and maleated polypropylene (PPgMAH) (10 wt%) via single screw nanomixer extruder followed by injection molding into test samples to examine the mechanical, thermal, and morphological properties of PP/S‐OMMT nanocomposites. Unmodified Sabah MMT (S‐MMT) and commercial grade MMT (Nanomer 1.30P) filled PP nanocomposites were also characterized for comparison purpose. X‐ray diffraction results showed that the interlayer spacing of S‐MMT increased after organic modification as Fourier transform infra‐red and elemental analysis evidenced the presence of octadecylamine. PP/S‐OMMT nanocomposites showed a better dispersion and strength compared to PP/Nanomer 1.30P nanocomposites due to its smaller MMT platelet size. differential scanning calorimetry and Thermogravimetry analysis revealed that the thermal stability and crystallinity of neat PP improved with the addition of all types of MMT. Dynamic mechanical analyzer showed that PP nanocomposites have higher storage modulus (E′) values than the neat PP over the whole temperature range. The new PP/S‐OMMT nanocomposites showed a comparable performance with PP/Nanomer 1.30P nanocomposites exhibiting promising future applications of S‐MMT in polymer/MMT nanocomposites. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

12.
The microstructure and mechanical properties of polypropylene (PP)/OMMT binary nanocomposites and PP/styrene‐6‐(ethylene‐co‐butylenes)‐6‐styrene triblock copolymer (SEBS)/OMMT ternary nanocomposites were investigated using X‐ray diffraction (XRD), transmission electron microscopy (TEM), and rheology and electromechanical testing machine. The results show that the organoclay layers are mainly intercalated and partially exfoliated in the PP‐based nanocomposites. The additions of SEBS and OMMT have no significant effect on the crystallization behavior of PP. At the same time, it can be concluded that the polymer chains of PP and SEBS have intercalated into the organoclay layers and increase the gallery distance after blending process based on the analytical results from TEM, XRD, and rheology, which result in the form of a percolated nanostructure in the PP‐based nanocomposites. The results of mechanical properties show that SEBS filler greatly improve the notched impact strength of PP, but with the sacrifice of strength and stiffness. OMMT can improve the strength and stiffness of PP and slightly enhance the notched impact strength of PP/PP‐g‐MA. In comparison with neat PP, PP/OMMT, and PP/SEBS binary composites, notched impact toughness of the PP/SEBS/OMMT ternary composites significantly increase. Moreover, the stiffness and strength of PP/SEBS/OMMT ternary nanocomposites are slightly enhanced when compared with neat PP. It is believed that the synergistic effect of both SEBS elastomer and OMMT nanoparticles account for the balanced mechanical performance of the ternary nanocomposites. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
Poly(vinyl chloride) (PVC)/organophilic‐montmorillonite (OMMT) nanocomposites were prepared by direct melt intercalation. PVC/compatibilizer ((vinyl acetate) copolymer (VAc))/OMMT nanocomposites were also prepared by melt intercalation by a masterbatch process. The effect of OMMT content on the nanostructures and properties of nanocomposites was studied. The nanostructures were studied by wide angle X‐ray diffraction (WAXD) and transmission electron microscopy (TEM). The linear viscoelastic properties and dynamic mechanical properties of PVC/OMMT nanocomposites were also investigated by an advanced rheometric expansion system (ARES) rheometer. The results showed that partially exfoliated and partially intercalated structures coexisted in the PVC/OMMT and PVC/VAc/OMMT nanocomposites. The mechanical properties test results indicated that the notched Charpy impact strengths of nanocomposites were improved compared to that of pristine PVC and had a maximum value at 1 phr OMMT loadings. The compatibilizer could further improve the impact strengths. But the existence of OMMT decreased the thermal stability of PVC/OMMT and PVC/VAc/OMMT nanocomposites. The linear viscoelastic properties test results indicated the dependence of G′ and G″ on ω shows nonterminal behaviors, and they had better processibility compared with pristine PVC. However, the glass transition temperatures of PVC/OMMT nanocomposites almost had little change compared to that of pristine PVC. POLYM. COMPOS., 27:55–64, 2006. © 2005 Society of Plastics Engineers  相似文献   

14.
Poly(methyl methacrylate)/poly(ethylene oxide) (90/10) blend containing various contents of functionalized graphene was prepared through solution technique and characterized to investigate the effects of functionalized graphene content on mechanical, thermal, and electrical properties of the nanocomposites. Infrared results revealed the interaction between matrix and functionalized graphene. Electron microscopy images of the nanocomposites exhibited a good dispersion of functionalized graphene nanosheets in the blend. The incorporation of functionalized graphene significantly increased the thermal stability and mechanical properties of poly(methyl methacrylate)/poly(ethylene oxide) blend. At electrical percolation threshold achieved at functionalized graphene loading of 4.27?wt%, the conductivity of the nanocomposites was increased by more than eight orders of magnitude.  相似文献   

15.
Unsaturated polyester (UP)-toughened epoxy nanocomposites were prepared, and their effective mechanical and thermal properties were studied. Two types of organo-modified montmorillonite (OMMT) clays were used to prepare the nanocomposites. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis showed the formation of exfoliated silicate layers in the UP-toughened epoxy matrix. Mechanical tests revealed that nanocomposites (containing 1 wt% OMMT clay) showed an increase in tensile strength to 13.8%, flexural strength to 10%, and impact strength to 4% compared with an UP-toughened epoxy blend. The effect of different heating rates on the curing behavior of UP-toughened epoxy nanocomposites was investigated using non-isothermal differential scanning calorimetry. The data were interpreted using the Kissinger and Flynn–Wall–Ozawa models to find the curing reaction parameter. The water uptake behavior for nanocomposites increased with the addition of OMMTs. Scanning electron microscopy micrographs indicated morphological changes in the impact fractured samples of UP-toughened epoxy nanocomposites.  相似文献   

16.
Polypropylene (PP)/organic montmorillonite (OMMT) nanocomposites were first prepared through twin-screw extruder and then subjected to multistage stretching extrusion with an assembly of laminating-multiplying elements (LMEs, which divide and recombine polymer melts). The exfoliated efficiency of LMEs on OMMT dispersed in PP matrix was investigated by optical microscopy, scanning electron microscope, transmission electron microscopy and X-ray diffraction. Because of the absence of compatibilizer, molecular chains of PP were not intercalated into the galleries of OMMT during the multistage stretching extrusion. The exfoliation of OMMT was induced by the strong force occurred in LMEs, which can destruct van der Waal’s interaction between the laminate OMMT platelets. The exfoliation degree of OMMT has been improved with the increase of number of LMEs used. The dispersion morphology of OMMT was thermodynamically stable after secondary melt processing. As a result, the mechanical properties of composites have been enhanced with increasing LME number. We realized the exfoliation of OMMT by the function of strong shear field without the incorporation of compatibilizer.  相似文献   

17.
The toughening of polypropylene [PP] with styrene–butadiene–styrene rubber [SBS]/montmorillonite [MMT] nanocomposites was investigated with respect to morphological, thermal, and mechanical properties. The MMT/SBS nanocomposites were prepared in an internal mixer, using an epoxidized SBS [SBSe] to investigate its effect as a compatibilizer. The MMT/SBS nanocomposite was added to PP up to 10 wt%, aiming at material toughening. Transmission electron microscopy (TEM) revealed MMT induced dispersed-phase reductions when compared to typical PP/SBS blends. In addition, changes in the PP crystallization process were observed in the presence of the nanocomposite. Surprisingly, the use of nanofiller, combined with SBSe compatibilizer agent, increased the PP impact strength by about 60%, with no reduction in the tensile module.  相似文献   

18.
Both polypropylene (PP) and PP/organo-montmorillonite (OMMT) masterbatch containing antistatic agent (3–9 wt%) were prepared by using co-rotating twin screw extruder followed by injection molding. PP/OMMT masterbatch was prepared by mixing PP, OMMT and maleated PP (PPgMAH). The PP nanocomposites were characterized by using X-ray diffractometer (XRD), differential scanning calorimeter (DSC), thermogravimetry analyzer (TGA), hardness and surface resistivity tests. XRD results indicated that AA could promote the intercalation in PP/OMMT nanocomposites. The decomposition temperature of PP/OMMT/AA nanocomposites is higher than that of PP/OMMT. The hardness, degree of crystallinity and surface resistivity of PP nanocomposites was influenced by the addition of antistatic agent.  相似文献   

19.
Thermal, mechanical and morphological properties of surface‐modified montmorillonite (OMMT)‐reinforced Viton rubber nanocomposites were studied. The surface of montmorillonite was modified with a column chromatography technique using quaternary long‐chain ammonium salt as an intercalant, which resulted in uniform exchange of ions between montmorillonite and the ion‐exchange resin, and increased the d‐spacing to 31.5 Å. This improved d‐spacing was due to the use of an ion‐exchange column of sufficient length (35 cm) and diameter (5 cm) with maximum retention time for exchange of ions. The Viton nanocomposites reinforced with OMMT (3–12 wt%) were prepared using a two‐roll mill and moulded in a compression moulding machine. Tensile strength increased 3.17 times and elongation at break from 500 to 600% for 9 wt% loading of OMMT in comparison to pristine Viton rubber. Thermogravimetric analysis revealed that the presence of OMMT greatly improved the thermal stability. This improvement in properties with increasing OMMT loading was due to insertion of rubber chains between the OMMT plates with good wetting ability. Overall, at an optimum OMMT loading of 9 wt%, the properties of the Viton rubber nanocomposites improved, and subsequently worsened at 12 wt% due to agglomeration of OMMT as revealed by scanning electron microscopy and atomic force microscopy images. © 2013 Society of Chemical Industry  相似文献   

20.
Ethylene-methacrylic acid ionomer (Surlyn) with concentration up to 20 wt% based on total weight of polymer resin was added into polypropylene (PP)/organoclay hybrids. The microstructure, rheological properties, crystallization properties and mechanical properties of the obtained nanocomposites have been investigated. The addition of ionomer markedly enlarged interlayer spacing of the platelets and led to an improved degree of exfoliation. Moreover, clay silicates were found to selectively disperse either inside the ionomer phase or at the phase boundary. Compared to the binary immiscible blends, an improved interfacial adhesion was achieved for PP/Surlyn/OMMT hybrids. Unlike PP/Surlyn binary blends, the viscoelastic properties of the hybrids significantly increased with increasing Surlyn concentration, which could be attributed to the improved clay dispersion and the contribution of silicate layers at the interface between PP and Surlyn. A synergistic role between Surlyn and clay was also found to suppress the crystallization of PP matrix. In addition, PP/Surlyn/OMMT hybrids exhibited superior tensile strain compared to the corresponding PP/PP-g-MA/OMMT. Both tensile strength and elongation at break showed maximum at Surlyn concentration of 5 wt%. By comparing the experimental tensile yield strength with model prediction, it was suggested that the clay platelets localized at the interface could play a role of interfacial activation to some extent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号