共查询到20条相似文献,搜索用时 11 毫秒
1.
One‐step oxidation of aniline by peroxotitanium acid to polyaniline–titanium dioxide: A highly stable electrode for a supercapacitor 下载免费PDF全文
In this study, to make a stable electrode material for a supercapacitor, we selected a polyaniline and titanium dioxide (TiO2) hybrid material. Peroxotitanium acid was used to oxidize aniline in the presence of sulfuric acid to a poly(aniline sulfate) salt–titanium oxide composite in one step. IR, X‐ray diffraction, and energy dispersive X‐ray analysis (EDAX) analyses supported the formation of the composite. The poly(aniline sulfate) salt–titanium oxide composites (50 wt % each) showed an amorphous, flakelike morphology having a conductivity value of 8 × 10?3 S/cm with an excellent yield and stability (300°C).This composite material in the cell configuration showed a specific capacitance of 320 F/g at a 0.33 A/g discharge current density. Thirty thousand charge–discharge (CD) cycles at a heavy CD current density of 3.3 A/g were carried out on the supercapacitor cell. The values of equivalent series resistance (ESR) (8–9 Ω) and efficiency (100–98%) were found to be independent of the cycle number with an excellent retention capacity of 83%. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41711. 相似文献
2.
In this work, superparamagnetic Fe3O4@PPy nanocomposite with core-shell structure having strong near-infrared (NIR) absorption is synthesized via a facile two-step modified procedure. The prepared nanocomposite samples are characterized by UV–vis, FTIR, SEM, TEM, VSM, and XRD. The effects of laser power density (1.5–2.5 W cm−2) and aqueous concentration (0.01–0.2 mg ml−1) of the nanocomposite on the photothermal performance are investigated in the NIR region (808 nm). At 0.1 mg ml−1 concentration, the temperature reaches up to 50.1°C, 64.1°C, and 78.4°C within 10 min, under 1.5 W cm−2, 2.0 W cm−2, and 2.5 W cm−2 NIR laser power density values, respectively. Photothermal conservation efficiency is calculated as 43.9% and the nanocomposite exhibits excellent photothermal stability. In summary, the core-shell Fe3O4@PPy nanocomposite is a promising candidate for photothermal therapy and simultaneous magnetic field-guided treatments. 相似文献
3.
Aqueous,interfacial, and electrochemical polymerization pathways of aniline with thiophene: Nano size materials for supercapacitor 下载免费PDF全文
Aniline was mixed with thiophene and oxidized by ammonium persulfate in the presence of sulfuric acid via an aqueous polymerization pathway (PAT‐AP). Aqueous polymerization was also carried by sodium lauryl sulfate surfactant, and also by interfacial and electrochemical polymerization pathways. Polymers prepared were characterized by physical, spectral, and electrochemical methods. Nanofibers (30–60 nm diameter) was obtained in the case of aqueous polymerization pathway, whereas interfacial (40–60 nm) and electrochemical polymerization pathways show particulate (500–600 nm) morphology. Polymer samples were used as electrode materials in supercapacitor. Among the four different pathways, PAT‐AP nanofibers show higher capacitance of 614 F g?1 at 1 mV s?1. The values of specific capacitance, energy, and power densities of PAT‐AP were found to be 400 F g?1, 20 W h kg?1 and 1200 W kg?1, respectively, at a current density of 2 A g?1. The retention capacitance is 78% after completion of 1000 cycles. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42013. 相似文献
4.
Dulse‐derived porous carbon–polyaniline nanocomposite electrode for high‐performance supercapacitors 下载免费PDF全文
Dulse‐derived porous carbon (DDPC)–polyaniline (PANI) nanocomposites were fabricated by a method based on the in situ chemical oxidation polymerization of aniline on DDPC. The characterization of the material showed that the nano‐PANI was grown on the surface of DDPC in the form of nanosticks or nanoparticles. The DDPC–PANI nanocomposites were further used as electrode materials for energy‐storage applications. Meanwhile, the effect of the amount of aniline on the electrochemical performance of DDPC–PANI was also investigated. The results show that a maximum specific capacitance of 458 F/g was achieved for the DDPC–PANI nanocomposites; this was higher than that of the DDPC electrode (218 F/g), and the PANI electrode (318 F/g). The specific capacitance of DDPC–PANI remained 66.0% of the initial value after 5000 cycles; this was higher than that of PANI (50.5%). Finally, a device of DDPC–PANI–activated carbon (AC) was assembled with DDPC–PANI as a positive electrode, which exhibited a high energy density of 9.02 W h/kg, which was higher than that of PANI–AC device. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45776. 相似文献
5.
Enhanced performance by polyaniline/tailored carbon nanotubes composite as supercapacitor electrode material 下载免费PDF全文
Tingting Ye Yafei Kuang Congjia Xie Zhongyuan Huang Changjun Zhang Dan Shan Haihui Zhou 《应用聚合物科学杂志》2014,131(6)
Polyaniline/tailored carbon nanotubes composite (PANI/TCN) synthesized via situ polymerization of aniline monomer in the presence of tailored carbon nanotubes (TCN) is reported as electrode material for supercapacitors. The morphology, structure, and thermostability of the composite were characterized by scanning electron microscope, Fourier transform infrared, and thermogravimetric analysis. The electrochemical property of the resulting material was systematically studied using cyclic voltammetry and galvanostatic charge–discharge. The results show that the short rod‐like PANI dispersed well in the TCN with three‐dimensional network structure. The as‐prepared composite shows high specific capacitance and good cycling stability. A specific capacitance of 373.5 F g?1 at a current density of 0.5 A g?1 was achieved, which is much higher than that of pure PANI (324 F g?1). Meanwhile, the composite retains 61.7% capacity after 1000 cycles at a scan rate of 50 mV s?1. The enhanced specific capacitance and capacity retention indicates the potential of composite as a promising supercapacitor electrode material. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2014 , 131, 39971. 相似文献
6.
Polyaniline/cobalt oxide (PANI/Co3O4) nanocomposites have been investigated for their sensitivity towards carbon monoxide (CO) gas at room temperature. The Co3O4 nanoparticles were prepared by ultrasound assisted coprecipitation method and then incorporated into the PANI matrix. Fourier transform infrared spectroscopy and ultraviolet–visible spectroscopy, powder X‐ray diffraction, and field emission scanning electron microscopy have been used to characterize the nanomaterials. The PANI/Co3O4 nanocomposite sensors were found to be highly selective to CO gas at room temperature. A significantly high response of 0.81 has been obtained for 75 ppm CO concentration with a response time of 40 s. Based on the observations of the sensing study, a mechanism for CO sensing by the nanocomposite has been proposed. Influence of humidity on the sensor response towards CO has also been studied and the results presented. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 44115. 相似文献
7.
In situ electrochemical synthesis of a poly(o‐anisidine) counter electrode for a dye‐sensitized solar cell 下载免费PDF全文
Poly(o‐anisidine) (POA) counter electrodes (CEs) were fabricated by potentiodynamic deposition and incorporated into platinum (Pt)‐free dye‐sensitized solar cells (DSSCs). A different sweep number had great impact on the morphology and electrocatalytic activity of the POA films. The POA film fabricated by 25 sweep cycles was observed to have a highly porous morphology, and this resulted in a lower charge‐transfer resistance of 57 cm2 in comparison with the Pt CE. The DSSC assembled with the POA CE showed a higher photovoltaic conversion efficiency of 1.67% compared to 1.2% for the DSSC with the Pt CE under full sunlight illumination. Therefore, the high active surface area of the 25‐sweep‐segmented POA film could be considered a promising alternative CE for use in DSSCs because of its high electrocatalytic performance and electrochemical stability. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42041. 相似文献
8.
Siti Musliha Ajmal Mokhtar Eva Alvarez de Eulate Vithyasaahar Sethumadhavan Miko Yamada Tarl W. Prow Drew R. Evans 《应用聚合物科学杂志》2021,138(44):51314
Conducting polymers are promising candidates for wearable devices due to mechanical flexibility combined with electroactivity. While electrochemical measurements have been adopted as a central transduction method in many on-skin sensors, less studied is the stability of the active materials (in particular poly3,4-ethylenedioxythiophene, PEDOT) in such systems, particularly for “on-skin” applications. In this study, several different variants of doped PEDOT are fabricated and characterized in terms of their (electrical, physical, and chemical) stability in biological fluid. PEDOT doped with tosylate (TOS) or polystyrenesulfonate (PSS) are selected as prototypical forms of conducting polymers. These are compared with a new variant of PEDOT co-doped with both TOS and PSS. Artificial interstitial fluid (aISF) loaded with 1% wt/vol bovine serum albumin is adopted as the testing medium to demonstrate the stability in dermal applications (i.e., conducting polymer microneedles or coatings on microneedles). A range of techniques such as cyclic voltammetry and electrochemical impedance spectroscopy are used to qualify and quantify the stability of the doped conducting polymers. Furthermore, this study is extended by using human skin lysate in the aISF to demonstrate proof-of-concept for stable use of PEDOT in wearable “on-skin” electronics. 相似文献
9.
A polyaniline (PANI)‐Cu nanocomposite‐modified electrode was fabricated by the electrochemical polymerization of aniline and the electrodeposition of copper under constant potentials on a glassy carbon electrode (GCE), respectively. Scanning electron microscope result shows that the PANI‐Cu composite on the surface of the GCE displays the nanofibers having an average diameter of about 80 nm with lengths varying from 1.1 to 1.2 μm. The electrode exhibits enhanced electrocatalytic behavior to the reduction of nitrite compared to the PANI‐modified GCE. The effects of applied potential, pH value of the detection solution, electropolymerization charge, temperature, and nitrite concentration on the current response of the composite‐modified GCE were investigated and discussed. Under optimal conditions, the PANI‐Cu composite‐modified GCE can be used to determine nitrite concentration in a wide linear range (n = 18) of 0.049 and 70.0 μM and a limit of detection of 0.025 μM. The sensitivity of the electrode was 0.312 μA μM?1 cm?2. The PANI‐Cu composite‐modified GCE had the good storage stability. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献
10.
Improved electrochemical performances of polyaniline by graphitized mesoporus carbon: Hybrid electrode for supercapacitor 下载免费PDF全文
In this work, graphitized mesoporus carbon (GMC) was used to increase the specific capacitance and cycle stability of polyaniline (PANI). Hybrid material of polyaniline‐graphitized mesoporus carbon (GMCP) was prepared by in situ chemical polymerization of aniline in presence of sulphuric acid using ammonium persulfate oxidant with various amounts of GMC. Formation of hybrid sample was confirmed from X‐ray diffraction, and the composite sample was stable up to 250°C. Morphology, crystalline nature, and electrochemical performance of GMCP were compared with that of its individual components, GMC and PANI. GMC showed particle morphology and PANI showed nanofiber morphology. GMCP2 composite showed nanofibrous form of PANI grown on GMC (spherical form) along with PANI nanofibers. Higher crystallinity was obtained for GMCP than that of PANI. Cycling stability of GMCP2 was carried up to 12,000 cycles at 1200 W kg?1 and the retention capacitance was 66% of its original capacitance of 243 F g?1. With the same power density, GMC showed less capacitance value of 53 F g?1 with 92% retention and PANI showed capacitance of 187 F g?1 and it underwent 1500 cycles only. Higher supercapacitor performance was obtained for GMCP composite compared to that of its components, PANI and GMC. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42540. 相似文献
11.
Izan Izwan Misnon Karnan Manickavasakam Norhayati Nordin Rajan Jose 《International Journal of Applied Ceramic Technology》2023,20(3):2030-2042
In this work, conducting polymer modification on metal oxide surfaces was targeted to improve the composite conductivity and stability for electrochemical energy storage applications. Polyhedral cobalt oxide (Co3O4) was prepared using a molten salt combustion method and coated with polyaniline (PANI). The composite (PANI-CoM) was characterized using XRD, TGA, FTIR, FESEM, TEM, and BET. From cyclic voltammetry analysis in 6 M KOH, PANI-CoM shows a high CS (985 F/g) compared to bare Co3O4 (278 F/g), indicating that PANI coating has improved pseudocapacitive charge storability of the electrode. The electrolyte diffusion on the internal active surfaces has increased from 11% to 31%, contributed by the reduction of internal resistance by 29%. Activated carbon and ordered mesoporous carbon (OMC) were used to manufacture two sets of asymmetrical supercapacitor devices, and PANI-CoM/OMC functioned the best performance with an ED of 22 Wh/kg at a PD of 400 W/kg. 相似文献
12.
《Ceramics International》2017,43(2):2057-2062
A novel Ni@NiCo2O4 core/shells structure consisting of the Ni microspheres skeletons and nanosheet-like NiCo2O4 skins was designed and investigated as the electrochemical electrode for supercapacitor. Due to the unique architecture with Ni microspheres as the highly conductive cores improving the electrical conductivity of electrode and external nanosheet-like NiCo2O4 shells as the efficient electrochemical active materials facilitating the contact between the electrode and electrolyte, the as-prepared Ni@NiCo2O4 exhibited excellent electrochemical performance with high specific capacity of 597 F g−1 (1 A g−1) as well as remarkable capacitance retention of 96% (3000 cycles). These impressive results pave the way to design high-performance electrode materials for energy storage. 相似文献
13.
In the framework of this study, a facile method to obtain polypyrrole (PPy)/carbon nanotubes composites is presented. Chemical polymerization of PPy directly on the carbon nanotubes allows to obtain a homogenous distribution of the polymer. A low amount of carbon additive, varying from 1.5 to 5.5 wt %, is applied in order to prevent the decrease of capacitance value due to the presence of a low-capacitance component and, at the same time, to protect the electrode material from mechanical changes during cycling electrical measurements. The electrochemical properties, such as capacitance, its retention at different current loads, cycling stability, or self-discharge, are discussed. Improvement of electrochemical performances of the synthesized materials is observed mostly during cyclic stability measurements and at high current regimes. The obtained results confirm that the addition of only 3% of carbon nanotubes provides the best electrochemical performances as electrode materials for supercapacitor application. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48867. 相似文献
14.
Electrochemical behavior of a Nafion‐membrane‐based solid‐state supercapacitor with a graphene oxide—multiwalled carbon nanotube—polypyrrole nanocomposite 下载免费PDF全文
In this study, we sprayed a graphene oxide–multiwalled carbon nanotube (GM) suspension in isopropyl alcohol–water onto a Nafion membrane. The electrodeposition of polypyrrole (PPy) was carried out on Nafion to complete the fabrication of a solid‐state symmetric supercapacitor. Nafion 117 membranes are used as electrolyte separators in the preparation of supercapacitors. The characterization of the symmetric supercapacitor was done by X‐ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy. The electrochemical properties of the symmetric solid‐state supercapacitor were investigated by cyclic voltammetry, galvanostatic charge–discharge, and electrochemical impedance spectroscopy techniques in 1M lithium chloride. A specific capacitance of 90.4 mF/cm2 (258.3 F/g1) was obtained for the supercapacitor at a scan rate of 10 mV s?1. Maximum energy and power densities of 10 W h/kg and 6031 W/kg were obtained for the fabricated supercapacitor. In such a symmetric configuration, the highly interconnection networks of GM–PPy provided good structure for the supercapacitor electrode, and the good interaction between PPy and GM provided fast electron‐ and charge‐transportation paths so that a high capacitance was achieved. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44926. 相似文献
15.
Polyaniline salt containing dual dopants,pyrelenediimide tetracarboxylic acid,and sulfuric acid: Fluorescence and supercapacitor 下载免费PDF全文
Storage of energy is considered as the most germane technologies to address the future sustainability. In this study, aniline was chemically oxidized with a controlled concentration of pyrelenediimide tetracarboxylic acid (PDITCA) by ammonium persulfate to polyaniline salt (PANI‐H2SO4‐PDITCA), with nanorods morphologies, having a sensibly decent conductivity of 0.8 S cm?1, wherein H2SO4 was generated from ammonium persulfate during polymerization. PANI‐H2SO4‐PDITCA salt showed bathochromic fluorescence shift (595 nm) compared to PDITCA (546 nm). The Brunauer–Emmett–Teller surface area of the PANI‐H2SO4‐PDITCA‐25 and PANI‐H2SO4‐PDITCA‐50 were 18.3 and 21.4 m2 g?1, respectively. Furthermore, its energy storage efficiency was evaluated by supercapacitor cell configuration. The composite PANI‐H2SO4‐PDITCA‐50 showed capacitance 460 F g?1 at 0.3 A g?1 and large cycle life 85,000 cycles with less retention of 77% to its original capacitance (200 F g?1) even at a better discharge rate of 3.3 A g?1. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 45456. 相似文献
16.
Anil Kumar Shubham Bawa Jayanta Bera Uday Shankar Satyajit Sahu Anasuya Bandyopadhyay 《应用聚合物科学杂志》2023,140(1):e53242
In this study, Al(III)-metallopolymer is synthesized with our previously reported ligand to understand the difference in the interaction of the reported ligand with transition metal ions (Fe(II) and Cr(II) ions) and smaller cationic radius main group metal ion. Al(III)-metallopolymer is thoroughly characterized by different analytical techniques to understand the structure–property relationship. Surface morphological analyses reveal the formation of long nano-fiber strands on the respective substrates. This polymer has shown reversible redox behavior, which is ligand centric as no d-orbitals are available on the central metal ion for the electron push-pull mechanism. Al(III)-metallopolymer is fluorescent active, and it is shown a reversible change in absorption spectrum on the application of the appropriate potential. This ligand-based redox-switching also generates a bistable state when a metal–insulator(thin film of polymer)-metal sandwich device is probed in between ±1 V, and it is stable in the ambient condition to sustain several flip-flop cycles without any degradation for 103 s as observed from the experimental data. This work enlightens a new metallopolymer with a low value of SET-RESET voltage and a long retention time for the future memristive device, which can operate at very low voltage compared to conventional Si-based memory chips. 相似文献
17.
近年来,越来越多的研究致力于开发新型、超高能量密度、高法拉第反应活性的电极材料,尤其将其应用于新一代超级电容器储能系统。通过水热法直接在柔性基质碳布上生长海胆状V2O5纳米球和十四面体Fe2O3纳米盒子。V2O5微观结构和储能性能可通过改变水热时间进行调控。海胆状V2O5纳米球正极材料具有最高比容量535 F·g-1。以十四面体Fe2O3纳米盒子作为负极材料组装的新型结构V2O5-CC//Fe2O3-CC柔性超级电容器,在功率密度为699.49 W·kg-1时,能量密度可达46.06 W·h·kg-1。而且具有良好的机械柔韧性,在180°弯曲循环测试5000次,比容量保持率仍高达83.4%。研究为开发下一代超高能量密度、柔性电子器件提供了一种通用而有效的策略。 相似文献
18.
Construction of free binder V2O5 and Fe2O3 flexible electrode and its application in supercapacitor 下载免费PDF全文
Bingbing HU Shu YANG Yan LI Chuanlan XU Peng CHEN Jingjing YU Danmei YU Changguo CHEN 《化工学报》1951,71(10):4836-4846
In recent years, more and more research has been devoted to the development of new electrode materials with ultra-high energy density and high Faraday reaction activity, especially applying them to a new generation of supercapacitor energy storage systems. In this study, sea urchin-shaped V2O5 nanospheres and tetrakaidecahedron Fe2O3 nano boxes have been grown directly on flexible matrix carbon cloth by hydrothermal method. The hydrothermal time can control the microstructure of V2O5, and the morphology determines the performance of energy storage, the positive electrode material of sea urchin-shaped V2O5 nanosphere exhibits a maximum specific capacitance of 535 F·g-1. In addition, the tetrakaidecahedron Fe2O3 nano box is used as the negative electrode, and a new structure V2O5//Fe2O3 flexible supercapacitor is assembled. When the power density is 699.49 W·kg-1, the energy density can reach 46.06 W·h·kg-1. Moreover, it also has good mechanical flexibility, and the specific capacity retention rate is still as high as 83.4% after 5000 times of 180° bending cycle tests. This work provides a general and effective strategy for developing the next generation flexible electronic devices with ultra-high energy density. 相似文献
19.
Preparation and enhanced electrochemical properties of Ag/polypyrrole composites electrode materials
Ag/polypyrrole (PPy) composites were synthesized with different dispersants via interface polymerization method. The morphology of the composites was investigated by scanning electron microscopy and transmission electron microscopy, and the results showed that the dispersant had strong effect on the morphology of the obtained composites. The structure of the products was characterized by Fourier transform infrared spectroscopy, and X‐ray diffraction. The specific capacitance and impedence of Ag/PPy composites electrode was evaluated through charge/discharge measurements and electrochemical impedance spectroscopy, respectively. Electrochemical performances indicated that Ag/PPy composite electrode used polyvinyl alcohol as dispersant exhibited the highest specific capacitance of 635.5 F/g at a current density of 2.45 mA/g, which provided potential application as supercapacitor materials. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013 相似文献
20.
Nanothermites are composite energetic materials made of fuel and oxidizer nanoparticles characterized by impressive exothermic reactions (highly flame temperatures and impressive heat combustion releases). However, nanothermites suffer from their high electrostatic discharge (ESD) sensitivity that may be at the origin of accidental ignitions during handling. The present study deals with the use of doped-polypyrrole conducting polymer in aluminum/tin (IV) oxide energetic formulation (Al/SnO2). X-ray diffraction, Fourier transforms infrared spectroscopy, scanning electron microscopy, conductivity measurements, sensitivities and combustion tests were implemented to characterize the polypyrrole-doped Al/SnO2 energetic composite. The results revealed a significant gradual ESD desensitization of the nanothermite (<0.14 mJ to 246.40 mJ) as a function of the doped-polypyrrole amount (0 to 15 wt%). The reactive properties of the polypyrrole-enriched Al/SnO2 nanothermite were verified and an acceptable reactive behavior was claimed. The successful adding of doped-polypyrrole conducting polymer within energetic nanocomposites is reported for the first time. 相似文献