首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
针对回收煤柱过程中围岩异常的破坏规律,研究了二次回采工作面回收煤柱过程中煤柱、空巷、工作面顶板的破坏规律。研究表明:空巷断面较小时空巷破坏受工作面影响较小,被回收煤柱的破坏主要受工作面引起的支承压力的影响,空巷对工作面顶板及煤柱的影响较小;空巷断面较大时工作面顶板破坏受空巷围岩集中应力影响较大,煤柱受支承压力和巷道应力集中作用失稳宽度较大。力学分析可知,工作面悬顶长度一定时,空巷宽度越大,煤柱失稳时宽度越大。现场观测表明:随着煤柱被回采宽度减小,煤柱中应力集中程度增大,煤柱两侧片帮次数增加、两侧顶板冒顶次数增加。  相似文献   

2.
以倾斜煤层综放工作面为研究对象,运用数值模拟的方法,从技术因素和地质因素2个方面,对煤层刚度、煤层埋深以及巷旁充填体强度不同时,沿空留巷围岩应力和位移随下区段工作面推进的动态分布和变化规律进行了模拟研究,以揭示不同工况条件对巷道围岩稳定性的影响规律。结果表明:煤层刚度越大,巷道围岩变形量越小,但两帮垂直应力越大;煤层埋深越大,巷道变形量和两帮垂直应力越大,但煤层埋深对煤层底板及巷旁充填体的影响相对较小;随巷旁充填体强度的增大,实体煤壁侧的垂直应力受影响较小,巷旁充填体侧垂直应力逐渐增大,巷道顶板和巷旁充填体侧位移逐渐减少,巷道底板和实体煤壁侧位移量逐渐增加。  相似文献   

3.
《煤炭技术》2021,40(7):5-8
以某煤矿921复采工作面为研究对象,采用理论分析、数值模拟、现场实测等方法,探讨了复采工作面围岩破坏机理。结果表明:工作面与老巷间煤柱宽度为1.9 m时,煤柱失载,造成工作面悬顶距增大,工作面围岩破碎。利用平面离散元UDEC软件模拟不同采高下围岩破碎特征,分析得到了工作面合理采高,当采高为2 m时,相对于采高为2.4 m和3 m,工作面压力较小,煤柱破坏程度低,通过对工作面顶板和煤壁位移的分析,得出煤柱宽度大于16 m时,3种采高下工作面围岩位移相差不大且绝对值较小,煤柱小于16 m时,工作面围岩位移开始增大,2 m采高下工作面围岩位移相对较小。  相似文献   

4.
针对虎峰煤业2号煤层开采过程中存在大量的空巷、采空区及遗留煤柱,复采工作面矿业显现复杂,围岩控制难度大,工作面煤壁片帮大的问题,采用数值模拟的方法,对复采工作面通过不同宽度的残留煤柱和不同跨度采空区时工作面围岩破坏范围、应力分布及工作面煤壁水平位移进行分析,从而确定合理的采高,认为工作面采高不宜超过3.0 m, 2.5 m以内最佳。  相似文献   

5.
大采高工作面过空巷覆岩运动复杂,空巷极易变形失稳,严重影响工作面推进速度。通过对大采高工作面过空巷围岩变形破坏特征及失稳原因分析,探讨工作面过空巷顶板稳定性影响因素,建立大采高工作面过联巷空顶-煤柱-支架耦合承载力学模型,确定大采高工作面过联巷煤基充填体强度、变形与最佳水灰比,提出大采高工作面过联巷空巷围岩控制技术,并进行现场工业性试验。结果表明:工作面过空巷表现为顶板大面积下沉、两帮垂直劈裂脱落,采动应力、浅埋薄基岩切落、支护作用失效与棚架非均匀受力是空巷失稳的主要原因;工作面过空巷顶板稳定性与空巷支护阻力、煤柱承载载荷及支架载荷密切相关,煤柱承载能力与煤柱宽度呈线性关系,确定空巷顶板最小支护强度为3.346 9 MPa。随着膏浆体(15%水泥)水灰比增加,膏浆体流动度、析水率、初终凝时间呈增加的趋势;单轴抗压强度与峰值应变整体表现为减小的趋势,且线性特征明显。水灰比0.6(10 d)为最佳膏浆体,单轴抗压强度为1.10 MPa,峰值应变为1.088%。随着时间增加,膏浆体强度在30 d达到3.7 MPa,提前充填有利于空巷稳定。采用空巷挑顶扩巷-锚索补强与膏浆体柔性充填技术方案后,...  相似文献   

6.
陈跃朋 《中州煤炭》2018,(3):164-169
确定巷间煤柱合理尺寸是保证留底煤掘进双巷布置大采高工作面安全、高产与高效的关键所在。以某矿122106大采高工作面沿底掘进胶运巷和辅运巷之间的护巷煤柱为工程背景,对工作面生产地质条件展开现场调研,同时原位测试巷道围岩地质力学参数。基于上述原始数据理论,估算出煤柱极限强度与合理的煤柱宽度范围,通过数值试验研究手段,分析初步选定宽度煤柱条件下,二次回采阶段巷道围岩及煤柱内部应力、位移和塑性破坏特征。结果表明:煤柱的极限强度为50.48 MPa,合理的煤柱宽度为19.24~29.28 m。煤柱宽度20 m时,煤柱内塑性区是2个独立的区域;当煤柱宽度达到一定程度后,接续面回采对上个工作面侧煤柱应力影响较小,主要是对本侧煤柱影响较大;靠近煤柱侧顶板和帮部变形较大,垂直位移最大值集中在巷道肩角位置,顶板出现不均匀下沉;煤柱核区内垂直应力均小于其极限强度,能保证稳定;煤柱最大垂直应力集中在两侧,靠近采空区的位置,煤柱中部存在较明显的应力下降区域。  相似文献   

7.
由于回坡底煤矿五采区10#煤层受过去小窑破坏性开采其上分层影响,导致现复采工作面再生顶板破碎,控制难度较大。本文采用理论分析、数值模拟、现场监测等方法,对复采工作面煤柱及空巷稳定性进行了研究,研究表明,煤柱稳定性与其宽度呈正相关,空巷稳定性与其跨度呈正相关,采用优化顶板控制技术可保证工作面在通过煤柱及空巷时围岩变形量控制在较小范围之内。  相似文献   

8.
当煤层顶板中存在1层或者数层坚硬岩层时,随着工作面采高的增加,侧向岩层应力集中范围增大,导致护巷煤柱宽度增大。为了减小护巷煤柱宽度,提出顶板切缝减小护巷煤柱宽度的技术原理。采用相似模拟和数值模拟实验,对巷旁顶板不同切缝深度的岩层应力传递控制作用进行了系统的研究,揭示了切缝深度对岩层破裂和顶板下沉的影响。结果表明:随着切缝深度的增加,煤柱上方岩层应力逐渐减小,层位越高,应力越小;工作面侧向采空区顶板下沉量增大,采空区岩层应力逐渐增加,层位越高,应力越大;煤柱上方10,20 m岩层应力峰值、峰值点距切缝边缘距离与切缝深度呈非线性反比关系;采空区上方10,20 m岩层应力与切缝深度呈指数关系,说明深度切缝可以有效控制岩层应力分布、应力峰值及峰值点距切缝边缘的距离。  相似文献   

9.
李小军  李怀珍  袁瑞甫 《煤炭学报》2012,37(8):1270-1274
依据平煤集团十三矿二 1 煤层的具体条件,分别对煤层埋深300,500,800 m和倾角0,25°,30°情况下运输巷下帮侧向压力分布规律和不同宽度区段煤柱受力情况进行了数值分析,并对该矿12020采煤工作面下巷实体煤侧的应力、围岩变形及锚杆受力的情况进行了现场监测。结果表明:随煤层倾角增大下区段运输巷与上区段回风巷两侧应力呈非对称分布,采场顶板应力分布也是高度不均匀、不对称的,侧向水平应力峰值随煤层倾角增大而增大,且工作面后方增加幅度大于工作面前方;峰值位置随煤层倾角增大而逐渐靠近煤壁。煤层倾角加大时,应力明显偏向下区段运输巷,使得下区段运输巷顶部出现明显应力集中,并且随着煤层倾角的增大,应力集中程度更加显著。  相似文献   

10.
护巷煤柱宽度的不同,将引起采空侧巷道围岩侧向支承应力分布重新分布,对于回采巷道稳定性有着极大的影响。以常村矿3~#煤S6-1工作面的地质条件及工程为背景,采用UDEC数值模拟并且结合现场实际进行研究,揭示了不同护巷煤柱宽度对采空侧巷道围岩侧向支承应力分布的影响。研究表明,随着煤柱宽度的增加,支承应力峰值为先增大后减小最后趋于稳定。煤柱宽度小于20 m时,垂直应力呈三角形分布,煤柱宽度大于20 m时,垂直应力分布由三角形向梯形过渡;巷道围岩破坏情况随煤柱宽度的变化而变化。  相似文献   

11.
采空区下近距离煤层开采时,下层煤回采巷道将受到上煤层采空区遗留煤柱、本煤层相邻工作面动压的影响,针对孙家沟煤矿特厚煤层放顶煤工作面13311回风巷严重的冒顶、两帮内挤和底臌等变形破坏现象,采用现场实测、理论分析及数值模拟等研究方法,探讨了回采巷道失稳机理及主要影响因素。研究表明,13311回风巷变形失稳主要影响因素为迎邻近工作面回采动压掘进、巷道布置方式和巷道支护参数不合理。与上层煤回采巷道垂直布置、巷道支护强度低且迎采动掘进时,下层煤回采巷道容易失稳。为改善13313回风巷围岩稳定性,有效控制巷道变形,根据试验巷道围岩物理力学性质及受力特征,研究提出了有针对性的解决方案:首先改进巷道布置方式,将下煤层回采巷道布置在采空区下,且应距离上煤层采空区遗留煤柱不小于20 m;其次增大护巷煤柱宽度,把区段护巷煤柱宽度增加到20 m以上,减少迎采动掘进动压的影响;最后,采用高预应力全锚索加强支护,提高锚杆锚固段的整体性及其承载能力。据此,在13313回风巷进行了工业性试验并进行了巷道矿压观测,结果表明:经受相邻13311工作面回采动压影响后,区段煤柱整体完整,具有良好的承载性能;锚索受力达到了250~300 kN,约为其破断力的50%,锚索受力增长平稳,较好地控制了巷道离层和围岩变形;13313回风巷顶底板移近量为400 mm左右,两帮移近量为300 mm左右,巷道围岩变形量得到了有效控制,保证了巷道的整体稳定性,取得了良好的支护效果。但是,采用该种巷道布置方式,下层13号煤层13313工作面回采时,因工作面上方11号煤层区段煤柱集中应力的影响,对其顶板和煤壁管理提出了更高的要求,需引起高度重视。  相似文献   

12.
合理尺寸的煤柱既可以保证巷道的稳定性,也可以提高煤炭的回收率.本文以铜川玉华煤矿为背景,通过应力动态监测、理论推导与工程验证相结合的方法确定区段煤柱合理留设宽度.通过对2410工作面进行应力监测,发现相较于采空区侧煤柱,实体煤的承载能力较高,应力增量较大,在采动影响下应力峰值向深部转移时间晚.为进一步确定煤柱具体留设宽...  相似文献   

13.
为确定深部高应力双巷布置工作面合理巷间煤柱宽度,提高巷道煤柱稳定性及资源回收率,以园子沟煤矿1022101工作面为工程背景,采用现场调研、理论分析、数值模拟的研究方法,掌握巷道巷间煤柱应力分布规律,确定深部高应力巷间煤柱侧向支承压力分布特征,并采用FLAC3D数值模拟分析了工作面多次回采影响下的不同宽度(7m、10m、13m、16m、19m、22m、25m)煤柱应力场分布特征,结合现场试验巷道15m、25m煤柱侧围岩破坏情况分析,最终确定深部高应力条件下合理巷间煤柱宽度。研究表明:当煤柱宽度为16~25m时,多次回采影响下煤柱应力集中,容易引发冲击地压|而宽度7~10m时煤柱整体压垮,巷道变形破坏严重。综合考虑资源回收、巷道围岩稳定性及动力灾害防治问题,确定园子沟煤矿深部高应力巷间煤柱宽度为13~15m时较为合理。  相似文献   

14.
回采巷道顶板大深度切缝后煤柱应力分布特征   总被引:4,自引:0,他引:4       下载免费PDF全文
以晋城煤业集团赵庄煤矿3305综采工作面工程地质条件和开采技术条件为背景,应用相似材料模拟和数值模拟方法,深入研究了回采巷道顶板切缝后不同切缝深度与回采巷道煤柱应力相关关系及应力分布特征。研究表明,与不切缝相比,回采巷道顶板切缝后,随切缝深度增加,垮落高度增加,以切缝高度处为垮落角顶点,顶板垮落角减小,垮落后矸石能够充满采空区并且支撑基本顶,减弱工作面采动应力传递,使煤柱应力降低。煤柱垂直应力峰值、垂直应力峰值位置距回采巷道煤壁距离和距工作面后方的距离与切缝深度成对数关系,煤柱垂直平均应力与切缝深度成非线性反比关系。  相似文献   

15.
针对西北地区某矿近距离煤层开采分组集中大巷稳定性问题,建立了近距离煤层开采分组集中大巷稳定性数值计算模型,分析了近距离煤层开采后顶板位移、顶板应力、围岩应力演化规律、锚杆(索)预应力场以及裂隙场演化规律。结果表明:(1)近距离煤层开采之后,大巷煤柱两侧的顶板发生断裂垮落,距离大巷煤柱越远,顶板下沉量越大;(2)随着近距离煤层开采,大巷之间保护煤柱的集中应力逐渐消失,工作面两侧大巷保护煤柱中出现10 MPa的应力集中现象,应力降低区范围大大增加,应力转移到左右工作面大巷保护煤柱中;(3)随着煤层开采,大巷围岩在地应力场与锚杆(索)预应力场的叠加场影响最小主应力的压应力逐渐增加,并在巷道周围形成了一个闭合连续的压应力带,其范围不断增大,最小主应力值逐渐减小,且下层煤的开采使上层煤的大巷锚杆(索)所受的力增加;(5)下层煤的开采使得上层煤两侧工作面大巷保护煤柱的剪切破坏带深度增加,最大破坏深度增加14 m,下层煤的大巷只在两帮出现深度为2 m的剪切破坏区,而两侧工作面的大巷保护煤柱出现10 m的剪切破坏。  相似文献   

16.
陆军 《现代矿业》2019,35(4):70-73
为优化煤柱留设宽度,提高采区煤炭采出率,确保工作面的回采推进速度,结合薛虎沟煤矿2-106工作面实际开采条件,运用理论分析与数值模拟相结合的方法对2-106B工作面停采护巷煤柱尺寸进行研究,通过对护巷煤柱进行极限平衡计算,确定留设合理煤柱尺寸应不小于20.32 m;通过FLAC3D数值模拟分析保护煤柱宽度为25,22,20,15,10 m条件下巷道围岩变形情况,得出留设保护煤柱宽度为22 m时,煤柱内集中垂直应力逐渐向稳定非对称拱形分布形态过渡,煤柱两侧产生一定剪破坏和拉破坏,但煤柱中部未破坏区域范围扩大,煤柱稳定性较好;煤柱留设宽度为22 m时,对2-106B工作面液压支架拆除的时间段护巷煤柱应力进行监测,结果表明,巷道围岩得到有效维护,并处于稳定状态。  相似文献   

17.
王庄煤矿91采区排水巷保护煤柱稳定性对于整个采区通风、排水、工作面安装等具有重要意义。采用物理模拟和数值模拟的方法,研究工作面回采时不同宽度保护煤柱条件下排水巷围岩位移、塑性区发育以及覆岩垮落特征。结果表明:煤柱宽度为20~40m时,排水巷受工作面影响强烈,塑性区大小随煤柱宽度的减小而增大,煤柱裂隙发育,难以满足生产要求;煤柱宽度为50~90m时,排水巷不受工作面回采影响,巷道顶板最大位移量、两帮最大位移量、塑性区大小不发生变化,顶底板和两帮的最大移近量分别为117mm和45mm。结合现场地质条件,91采区工作面开切眼距排水巷最短距离为80m,排水巷不受工作面回采的影响,能够满足整个91采区的安全高效生产要求。  相似文献   

18.
针对特厚煤层综放开采沿空掘巷时宽煤柱护巷效果不佳,煤壁片帮、围岩变形量大、煤炭资源浪费严重等现状。以伊犁潘津工业煤矿2302工作面回风巷为工程背景,基于极限平衡理论探究了侧压系数、采高、埋深及煤柱支护阻力等因素对窄煤柱宽度的影响规律。结果表明,随着前三者逐渐增大,煤柱宽度也随之增大,后者反之|煤柱合理宽度取值范围的上下极限差值也随之增大,而后者几乎不发生变化。此外,结合现场地质条件,确定了窄煤柱宽度为6m,同时采用数值计算验证了其合理性,并在2302工作面回风巷进行了工业性试验。现场结果表明,6m窄煤柱在沿空掘巷期间,巷道断面开拓轮廓无明显变形,围岩控制效果显著。  相似文献   

19.
受到原岩应力与采动应力叠加影响的巷道会产生非均匀变形,甚至发现顶板事故,采动巷道围岩稳定性控制是实现矿井安全高效开采的关键。针对长岭一号煤矿152106工作面轨道巷受到采动影响变形严重的问题,采用现场监测、数值模拟等研究方法,分析了采动巷道围岩变形特征及塑性区演化规律。结果表明:在采动影响下,巷道围岩变形呈非均匀特征,工作面前方巷道围岩变形量小于工作面后方,巷道煤柱侧变形量大于煤壁侧,顶板出现离层并且靠近煤柱侧底鼓量更大,局部可达400mm|工作面前方最大主应力、主应力比值、塑性区范围均小于工作面后方,塑性区呈椭圆形分布,巷道围岩位移量与塑性区范围具有一致性。据此提出了补强支护方案,即顶板补打锚索、煤柱对穿锚索及打设单体液压支柱,现场试验结果表明轨道巷煤柱帮变形减少了65%,巷道底鼓量260mm,工程应用效果较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号