首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 281 毫秒
1.
采用含钒钢渣微粉用作混合材制备了钢渣硅酸盐水泥,考察了不同钢渣掺量对水泥的安定性、强度和水化放热量的影响。结果表明:随着掺渣量增加,水泥的标准稠度下降,凝结时间延长,且掺渣量在30%以下,水泥的安定性合格;水泥的强度随掺渣量增加而下降,掺渣量为20%和30%时,水泥强度分别达到52.5R和42.5R强度等级;水泥的水化放热量随掺渣量增加而下降,该钢渣适用于大体积建筑施工。  相似文献   

2.
《钢铁钒钛》2021,42(4):79-84
以攀枝花钢渣微粉为研究对象,分析研究了用其取代或部分取代粉煤灰作为混凝土掺和料的可行性和经济效益,并按50%、75%、100%的取代率取代粉煤灰配制强度等级为C30、C40的高钛重矿渣混凝土,测定其拌合物工作性能及28、192 d抗压强度,并与不掺钢渣微粉的全粉煤灰高钛重矿渣混凝土对比分析。结果表明:钢渣微粉达到用于混凝土掺合料的相关指标要求,可作为掺合料应用到高钛重矿渣混凝土中且具有良好的经济效益;按实际生产用高钛重矿渣混凝土配合比设计强度为C30时,各取代率下高钛重矿渣混凝土拌合物工作性能良好且强度富余值较大,其中50%取代率下效果最好;当在原配合比下降低水泥强度等级时,各取代率、不同设计强度的高钛重矿渣混凝土28 d实测强度略低于设计强度,但后期强度增长较大,其中50%取代率下、设计强度为C30的高钛重矿渣混凝土192 d强度超过39 MPa,且工作性能良好,可用于非结构部位或对前期强度要求不高的构筑物。  相似文献   

3.
研究了不同配比钢渣对高炉矿渣混凝土活性的影响。结果发现,钢渣微粉掺量不大于20%(质量分数)的复合粉,活性指数能满足S95级矿渣微粉标准,不降低产品性能。在胶凝材料中复合粉质量分数为20%~40%时,使用20%的钢渣微粉与80%的矿渣微粉复合,7天的活性指数达到75%以上,28天的活性指数达到98%以上,效果好于单纯使用矿渣微粉。  相似文献   

4.
高卫波 《宝钢技术》2005,(Z1):84-87
钢渣微粉的利用代表目前钢渣资源化利用的最高水平.文章着重对影响钢渣微粉作为商品混凝土掺合料的力学性能的因素进行了分析,采用对比研究的方式对原料(矿物相和化学成分)、细度、微观孔结构等因素对钢渣微粉力学性能的影响进行了全面的剖析,最后对钢渣微粉与矿渣微粉复合后的力学性能影响机理进行了探讨.  相似文献   

5.
马根厚  吴飚 《包钢科技》2012,38(6):37-39
随着国家对冶金固体废弃物循环再利用的力度不断加大,对冶金废物再利用的研究也在不断深入。文章阐述了冶金行业固体废弃物矿渣、钢铁渣的利用,分析了钢渣矿渣复合微粉的化学成份和矿物组成,并对复合微粉的易磨性、安定性、活性进行定性、定量分析,做了水泥参合试验,实验证明矿渣、钢铁渣可以充分利用,现已进行工业生产,降低水泥生产成本。  相似文献   

6.
对半干法烧结烟气脱硫副产物的理化性能进行了分析,研究了不同掺入比例脱硫副产物矿渣微粉及其用于配置C30混凝土的性能。结果表明:脱硫副产物掺入比例不超过3%,矿渣微粉性能除7d活性略低,其他均满足国家标准要求;掺入比例为2%,矿渣微粉掺入比例25%时配置C30混凝土性能最优;通过机理分析,掺入2%脱硫副产物的矿渣微粉,其水化产物与水泥水化产物相近,为钙矾石和CSH凝胶。  相似文献   

7.
 为实现多固废协同利用、降低充填成本,在矿渣基全粒级细尾砂胶结充填料基础上,以流动性和抗压强度为表征,利用热闷钢渣磁选尾渣(钢尾渣)替代部分矿渣作为胶凝材料,脱硫灰和水泥熟料替代部分专用添加剂作为外加剂,采用正交试验探寻掺量规律,优化固体填充料配比,开发钢尾渣-矿渣基软性矿山充填料,并研究了外加剂与胶材比、灰砂比等因素的影响。对比分析了矿渣基准组、钢尾渣-矿渣基准组(B1)、强度最优外加剂组分钢尾渣-矿渣组(B7)等3组充填料的微观形貌及XRD图谱以探究其水化机理。结果表明,钢尾渣替代矿渣量增加、外加剂与胶材比减小,充填料浆流动性改善,但充填体抗压强度下降。强度正交试验结果表明,钢尾渣掺量大小决定强度低高,脱硫灰掺量宜高于水泥熟料。进一步调整外加剂组分配比,在灰砂比为1∶6、钢尾渣替代矿渣为20%条件下,找出B7组外加剂组分为脱硫灰、水泥熟料分别替代30%、20%专用添加剂,B7组料浆扩展度为143 mm,充填体形貌为富铁绿泥石胶结假方体钙硅灰石,28 d抗压强度达2.13 MPa,较基准组低0.19 MPa,较B1提高0.26 MPa。该替代方案满足现场充填C2级强度的要求,改善流动性并显著降低了充填成本。优化的外加剂组分配比在灰砂比为1∶4条件下同样具有强度优化作用,但较灰砂比为1∶6条件下低。  相似文献   

8.
通过对宝钢不同种类的钢渣化学成分和矿物岩相组成的X射线分析、钢渣微粉安定性、钢渣粒料稳定性、钢渣集料的磨耗值、放射性和碱度等基础特性的试验研究分析;进一步探讨了钢渣微粉、钢渣型砂、钢渣集料用于钢渣粉混凝土、钢渣透水混凝土、钢渣配重混凝土等新型混凝土及其制品在建筑工程中应用特点和性能;提出了钢渣在混凝土中资源化综合利用的发展路径。  相似文献   

9.
为了能够更好地大量利用矿渣、钢渣制备高强建筑材料,实验采用灰色关联分析方法研究了矿渣、钢渣的粒度分布对大掺量矿渣、钢渣胶凝体系抗压强度的影响.矿渣和钢渣掺量分别占胶凝材料总质量的50%和30%,水胶比为0.34.研究表明:粒度小于8.39μm的矿渣、钢渣颗粒对其胶凝体系3 d和28 d抗压强度均起到增强作用,大于8.39μm的矿渣、钢渣颗粒对抗压强度起到削弱作用.为了提高大掺量矿渣、钢渣胶凝体系28d抗压强度,应当主要增加5.03~8.39μm矿渣、钢渣颗粒数量.   相似文献   

10.
随着国家对环境保护要求日趋严苛,水泥价格逐年提高,以水泥作为充填胶凝材料的充填采矿成本不断提高,利用低品质固废开发低成本绿色充填胶凝材料替代水泥,对于提高矿山经济效益具有重要的现实意义。以邯邢地区某磁铁矿选矿全尾砂为骨料,利用周边固废资源进行矿渣基胶凝材料配比优化试验研究,获得矿渣基胶凝材料的配比:盐激发剂13%+碱激发剂11%+矿渣粉76%。胶砂比1∶4、料浆浓度66%的全尾砂矿渣基胶凝材料胶结充填体7d、28d强度分别为3.42 MPa和4.50 MPa,分别为42.5水泥强度的3.1倍和2.5倍,成本约为42.5水泥成本的70%。在此基础上,进一步利用钢渣固废,开展钢渣基全固废绿色充填胶凝材料的配比试验研究,获得钢渣基胶凝材料的配比:33%钢渣微粉+14%硫酸盐激发剂+53%矿渣微粉。胶砂比1∶4、料浆浓度66%的全尾砂钢渣基胶凝材料胶结充填体7d、28d强度分别为3.28 MPa和4.50 MPa,分别为42.5水泥强度的3.2倍和2.5倍,成本约为42.5水泥的60%。研究结果可为低成本绿色胶凝材料研发提供新思路。  相似文献   

11.
张浩 《工程科学学报》2020,42(2):172-178
以钢渣与生物质废弃材料为研究对象,利用钢渣中含有的金属氧化物对生物质废弃材料进行改性处理获得生态活性炭,研究钢渣种类、钢渣粉磨时间和钢渣超微粉用量对生态活性炭降解甲醛性能的影响。利用X-射线荧光光谱仪(XRF)、X-射线衍射仪(XRD)、激光粒度仪(LPSA)、傅立叶变换红外光谱仪(FTIR)、比表面积及孔径测定仪(BET)和扫描电子显微镜(SEM)测试钢渣超微粉的化学成分、钢渣超微粉的矿物组成、钢渣超微粉的粒径分布、钢渣超微粉的结构组成、生态活性炭的孔结构和生态活性炭的微观形貌。结果表明:钢渣为电炉渣,钢渣粉磨时间为90 min,钢渣超微粉用量为20 g制备的生态活性炭具有良好的降解甲醛性能与合理的经济性,即10 h后甲醛降解率为57.5%。电炉渣中Fe元素与Mn元素含量高,其中Fe元素促使大量甲醛在活性炭的多孔结构中形成富集,Mn元素对富集的甲醛进行催化降解,实现吸附降解与催化降解的协同作用。适当延长钢渣粉磨时间可以减小钢渣超微粉的粒径大小与改善钢渣超微粉的粒度分布均匀程度,有利于提高钢渣超微粉与活性炭、甲醛的降解作用面积。适量的钢渣超微粉可以提高生态活性炭的粉化率,抵消由于孔容积与比表面积降低导致的活性炭吸附降解作用下降的问题。   相似文献   

12.
王林  龙红明  张浩 《中国冶金》2019,29(12):75-79
以乙二醇与三乙醇胺为原料、无水乙醇为溶剂配制复合助磨剂。将复合助磨剂分别与滚筒渣、脱硫渣和热闷渣进行混合后,利用行星式球磨机进行粉磨。研究钢渣的化学成分与矿物组成、不同助磨剂对钢渣超微粉粒度分布的影响、复合助磨剂对钢渣超微粉的作用机理。结果表明,当乙二醇、三乙醇胺与无水乙醇按体积比2∶2∶2配制复合助磨剂,以钢渣∶复合助磨剂质量体积比为450 g∶6 mL时,钢渣超微粉的粒度分布最佳,即d90为9.14~9.28、d50为3.31~4.20、d10为0.99~1.04和d90-d10为8.11~8.24 μm,其中复合助磨剂对脱硫渣的助磨效果最佳。  相似文献   

13.
从钢渣作为混凝土粗骨料的可行性研究着手,通过XRF、XRD和SEM微观测试手段研究了钢渣的形貌、化学成分及矿物组成等特性。在钢渣稳定性试验方法的基础上,分别测定钢渣掺量为100%、75%、50%、25%、0%的粗骨料压蒸粉化率,并相应制取钢渣混凝土试件,测定不同龄期下的抗压强度,28 d测其稳定性。结果表明:钢渣作为混凝土粗骨料可行;随着钢渣配比的增加,对应的混凝土稳定性变差,以50%掺量为最佳,对应的粉化率为4.7%。  相似文献   

14.
以特殊钢渣超微粉与废弃核桃壳为研究对象,利用特殊钢渣超微粉的化学成分对废弃核桃壳进行改性处理制备钢渣基生物质活性炭。研究废弃核桃壳超微粉与特殊钢渣超微粉的质量比、特殊钢渣超微粉细度和吸附环境温度对钢渣基生物质活性炭吸收氯气性能的影响。结果表明:废弃核桃壳超微粉与特殊钢渣超微粉的质量比为100∶6,特殊钢渣超微粉的细度为600目,吸附环境温度为30 ℃时钢渣基生物质活性炭吸收氯气性能较好。特殊钢渣超微粉中Fe2O3具有磁性有利于氯气在钢渣基生物质活性炭表面形成富集,提高其吸附能力,CuO和MnO具有催化性可以协助促进钢渣基生物质活性炭的吸附能力。特殊钢渣超微粉细度过大,会造成小粒径颗粒团聚,从而影响钢渣基生物质活性炭对氯气的吸附能力进一步提高;在特殊钢渣超微粉粒径较小时,均匀性较好的特殊钢渣超微粉对提高钢渣基生物质活性炭吸附氯气较小。较高的吸附环境温度可能导致钢渣基生物质活性炭对氯气出现解析现象;同时钢渣基生物质活性炭表面没有出现特殊钢渣超微粉团聚与沉积的现象,具有层状结构特征,为吸附氯气提供了空间。   相似文献   

15.
为降低球团原料成本和开发新品种,济钢球团厂进行了利用炼钢精炼废渣和经济矿代替高价精粉生产炼钢用熔剂性球团矿的试验。结果表明,配加一定比例的精炼渣和经济矿能生产满足炼钢要求的熔剂性球团矿,可取得显著的经济效益和环境效益。  相似文献   

16.
主要论述了钢渣粉在混凝土工程中的应用。钢渣粉与矿粉复合使用不仅能降低混凝土生产成本,节约能源,并能改善混凝土性能,提高混凝土后期强度,具有很高的社会效益和经济效益。  相似文献   

17.
以钢渣超微粉和花生壳为原料制备钢渣–花生壳基生态活性炭,基于响应曲面法研究微波功率、浸渍比、钢渣掺量和钢渣细度对钢渣–花生壳基生态活性炭对甲醛气体吸附率的影响,并对其进行优化处理。利用X-射线红外光谱仪、场发射扫描电镜、比表面积及孔径测定仪等对钢渣–花生壳基生态活性炭进行表征分析。结果表明:钢渣–花生壳基生态活性炭最优制备参数为微波功率530 W,钢渣细度1160目,钢渣掺量(质量分数)10.8%,浸渍比1.25,其对甲醛气体的吸附率为94.14%。影响钢渣–花生壳基生态活性炭性能的因素次序依次为:微波功率、钢渣掺量、浸渍比、钢渣细度,其中微波功率与浸渍比、微波功率与钢渣掺量、钢渣掺量与钢渣细度均存在显著交互作用。适量钢渣改性活性炭有利于形成规则的孔结构、提高表面酸性官能团含量以及增强表面极性。   相似文献   

18.
Steel slag had lower activity and much lower hydration rate than cement.Quicklime and iron tailings were designed as modification agent to adjust the composition and properties of high temperature steel slag.The results show that quicklime as modifier can greatly increase the content of cementitious minerals in modified steel slag and also promote the decomposition of RO phases and transformation of MgO in RO phase to f-MgO.After high temperature modification with compound modifier of quicklime and iron tailings,steel slag shows the main mineral phases of C3 S,C2F and MgFe2O4.The activity index of modified steel slag at 28 days reaches 95.5% when the steel slag is modified by 15% of the compound modifier with the ratio of quicklime to iron tailings equal to 2∶1at 1 350℃.Moreover,the sample with the modified steel slag exhibits the dense structure of hydration paste and the main hydration products of C-S-H gels and Ca(OH)2 crystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号