首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 581 毫秒
1.
The results of a complex investigation of V–Mg–O catalysts for oxidative dehydrogenation (ODH) of methanol are presented. The efficiency of vanadium–magnesium oxide catalysts in production of formaldehyde has been evaluated. Strong dependence of the formaldehyde yield and selectivity upon vanadium oxide loading and the conditions of heat treatment of the catalyst were observed. The parameters of the preparation mode for the efficient catalyst were identified. In optimised reaction conditions the V–Mg–O catalysts at the temperature approximate 450 °C ensured the formation of formaldehyde with the yield of 94% at the selectivity of 97%.

No visible changes in the performance of the catalyst (methanol conversion, formaldehyde yield and selectivity) were detected during the 60 h of operation in prolonged runs. Characterization of the catalyst by XRD, IR, and UV methods suggests the formation of species of the pyrovanadate type (Mg2V2O7) with irregular structure on the surface of a V–Mg–O catalyst. These species make the catalyst efficient for methanol ODH.  相似文献   


2.
The catalytic performance in the oxidehydrogenation (ODH) of propane of vanadium oxide catalysts supported on gallium oxide, VOx/Ga2O3, with vanadium coverages lower or near the theoretical monolayer has been studied as a function of the vanadium content and compared with those of other known effective V–M–O (M=Mg, Ca) catalysts. Catalyst activity was very high and increased with the increase of vanadium loading in the range studied, while the selectivity trend was similar for the studied catalysts, excepting that with the lower V content. FT-Raman and 51V solid state NMR spectroscopies show that for coverages below the theoretical monolayer vanadium atoms are in tetrahedral co-ordination either in isolated or polymeric species, while the onset of vanadia formation is detected above that coverage. Interestingly, these catalysts show an one order of magnitude higher area-specific rate, similar initial olefin selectivity and slightly higher selectivity decrease with the increase of conversion than the best VMgO catalyst. This is due to the high intrinsic activity of isolated tetrahedral vanadium species. The combination of these factors produces an enhanced olefin productivity of V–Ga–O catalysts.  相似文献   

3.
Pore geometry of Ni-containing Mg–Al–O mixed oxide catalysts could be controlled by varying the Ni content in the synthesis. Low Ni content may lead to the catalysts having mesopores with shape cylinder and narrow pore size distribution; high Ni content results in the catalyst having pores with shape ink-bottle and a wide pore size distribution. In methane decomposition to produce hydrogen and nanocarbon, the 50 wt.% Ni/Mg–Al–O catalyst was rapidly deactivated after 2 h of reaction; however, the catalysts with 15 and 25 wt.% of Ni showed much longer lifetime, which can be explained by assuming a new modal related to pore geometry of the catalysts.  相似文献   

4.
Two distinct phases, orthorhombic and hexagonal, of Mo–V–Te–O mixed oxide catalysts were prepared separately by the hydrothermal synthetic method and solid-state reaction, and these catalysts were tested for propane selective oxidation to acrylic acid. The hydrothermally synthesized orthorhombic phase of the Mo–V–Te–O catalyst showed high activity and selectivity for the oxidation of propane into acrylic acid. This catalyst also showed extremely high catalytic performance in the propene oxidation, producing acrylic acid in a high yield. The hexagonal Mo–V–Te–O catalyst was formed via the solid-state reaction between the orthorhombic Mo–V–Te–O and -TeVO4. This phase showed poor activity to both propane and propene oxidations, although the hexagonal phase was constructed with the octahedra of Mo and V similar to the orthorhombic phase. Reaction kinetics study over the catalyst with orthorhombic structure revealed that propane oxidation was of first order with respect to propane and nearly zero order with respect to oxygen, suggesting that the rate-determining step of the reaction is C–H bond breaking of propane to form propene. Structural effects on the catalytic oxidation performance were discussed.  相似文献   

5.
Combinatorial screening technique has been applied to investigate the catalytic activity and selectivity of quaternary Mo–V–Te–Nb mixed oxide catalysts treated with various chemicals during preparation for selective oxidation of propane to acrylic acid. The catalyst libraries were prepared by the slurry method and catalytic activities were examined in 32-channel high-throughput screening reactor system coupled with a mass spectrometer and/or gas chromatograph.The obtained results provided substantial evidence that the sample preparation condition would have strong effect on the catalytic performance for propane selective oxidation. Among screened samples, Mo–V–Te–Nb treated with HIO3 solution presented a better performance. The reaction results of promising catalysts selected from the libraries were applied to further scale-up of the system and confirmed catalytic performance. Quantification of the result of Mo–V–Te–Nb treated with HIO3 solution was realized by combination of GC and MS and relationship between the MS data and the GC results can be established.  相似文献   

6.
The catalytic performances of Mo–V–Sb mixed oxide catalysts have been studied in the selective oxidation of isobutane into methacrolein. V–Sb mixed oxide showed the activity for oxidative dehydrogenation of isobutane to isobutene. The selectivity to methacrolein increased by the addition of molybdenum species to the V–Sb mixed oxide catalyst. In a series of Mo–V–Sb oxide catalysts, Mo1V1Sb10Ox exhibited the highest selectivity to methacrolein at 440°C. The structure analyses by XRD, laser Raman spectroscopy and XPS showed the coexistence of highly dispersed molybdenum suboxide, VSbO4 and -Sb2O4 phases in the Mo1V1Sb10Ox. The high catalytic activity of Mo1V1Sb10Ox can be explained by the bifunctional mechanism of highly dispersed molybdenum suboxide and VSbO4 phases. It is likely that the oxidative dehydrogenation of isobutane proceeds on the VSbO4 phase followed by the oxidation of isobutene into methacrolein on the molybdenum suboxide phase.  相似文献   

7.
The paper concerns the evolution of surface species of a V–O–Mo/anatase catalyst in the course of its thermal treatment in oxidising and/or reducing conditions. The catalyst was obtained by the sol–gel method. The structure of its surface was investigated by XPS and Raman spectroscopy. The fresh catalyst consists of anatase nanocrystallites with some vanadium and molybdenum ions substituted for titanium ones and molybdenum oxide islands on their surfaces. A V/Mo5O14 solid solution-containing V atoms in its channels, as well as MoO3 and anatase with some surface vanadia species are present on the catalyst surface.The reduction of anatase to TiO2−x and of MoO3 to Mo5O14, accompanied by inward vanadium diffusion occurs during the catalyst interaction with ammonia at 523 K. The oxidation of the TiO2−x but not Mo5O14 and V reappearance in the surface channels take place during the interaction of the reduced catalyst with molecular oxygen.However, the oxidation of Mo5O14 to MoO3 occurs under the influence of atomic oxygen, formed by NO decomposition at 423 K. It is accompanied by the surface vanadia species formation. The activity of V ions of these species in NO decomposition is lower than of the surface interstitial ones.  相似文献   

8.
Mo–V–X (X = Nb, Sb and/or Te) mixed oxides have been prepared by hydrothermal synthesis and heat-treated in N2 at 450 °C or 600 °C for 2 h. The calcination temperature and the presence or absence of Nb determines the nature of crystalline phases in the catalyst. Nb-containing catalysts heat-treated at 450 °C are mostly amorphous solids, while Nb-free catalysts heat-treated at 450 °C and samples treated at 600 °C clearly contain crystalline phases. TPR-H2 experiments show higher H2-consumption on catalysts with amorphous phases. Catalytic results in the oxidative dehydrogenation of ethane indicate that the selective production of the olefin is strongly related to the development of the orthorhombic Te2M20O57 or (SbO)2M20O56 (M = Mo, V, Nb) phase (the so-called M1 phase), which is mainly formed at 600 °C. This active and selective crystalline phase is characterized to show moderate reducibility and active centers enough for the selective oxidative activation of ethane with the minimum quantity possible of active centers for ethylene activation. In this sense, the best yield to ethylene has been achieved on a Mo–V–Te–Nb mixed oxide.  相似文献   

9.
Te-free and Te-containing Mo–V–Nb mixed oxide catalysts were diluted with several metal oxides (SiO2, γ-Al2O3, α-Al2O3, Nb2O5, or ZrO2), characterized, and tested in the oxidation of ethane and propane. Bulk and diluted Mo–V–Nb–Te catalysts exhibited high selectivity to ethylene (up to 96%) at ethane conversions <10%, whereas the corresponding Te-free catalysts exhibited lower selectivity to ethylene. The selectivity to ethylene decreased with the ethane conversion, with this effect depending strongly on the diluter and the catalyst composition. For propane oxidation, the presence of diluter exerted a negative effect on catalytic performance (decreasing the formation of acrylic acid), and α-Al2O3 can be considered only a relatively efficient diluter. The higher or lower interaction between diluter and active-phase precursors, promoting or hindering an unfavorable formation of the active and selective crystalline phase [i.e., Te2M20O57 (M = Mo, V, and Nb)], determines the catalytic performance of these materials.  相似文献   

10.
A detailed study on the influence of the addition of molybdenum ions on the catalytic behaviour of a selective vanadium–magnesium mixed oxide catalyst in the oxidation of n-butane has been performed. The catalysts have been prepared by impregnation of a calcined V–Mg–O mixed oxides (23.8 wt% of V2O5) with an aqueous solution of ammonium heptamolybdate, and then calcined, and further characterised by several physico-chemical techniques, i.e. SBET, XRD, FTIR, FT-Raman, XPS, H2-TPR. MgMoO4, in addition to Mg3V2O8 and MgO, have been detected in all the Mo-doped samples. The incorporation of molybdenum modifies not only the number of V5+-species on the catalyst surface and the reducibility of selective sites but also the catalytic performance of V–Mg–O catalysts. The incorporation of MoO3 favours a selectivity and a yield to oxydehydrogenation products (especially butadiene) higher than undoped sample. In this way, the best catalyst was obtained with a Mo-loading of 17.3 wt% of MoO3 and a bulk Mo/V atomic ratio of 0.6. From the comparison between the catalytic properties and the catalyst characterisation of undoped and Mo-doped V–Mg–O catalysts, the nature of selective sites in the oxidative dehydrogenation of n-butane is also discussed.  相似文献   

11.
Thermal behaviour of synthetic Cu–Mg–Mn and Ni–Mg–Mn layered double hydroxides (LDHs) with MII/Mg/Mn molar ratio of 1:1:1 was studied in the temperature range 200–1100 °C by thermal analysis (TG/DTA/EGA), powder X-ray diffraction (XRD), Raman spectroscopy, and voltammetry of microparticles. Powder XRD patterns of prepared LDHs showed characteristic hydrotalcite-like phases, but further phases were indirectly found as admixtures. The Cu–Mg–Mn precipitate was decomposed at temperatures up to ca. 200 °C to form an XRD-amorphous mixture of oxides. The crystallization of CuO (tenorite) and a spinel type mixed oxide of varying composition CuxMgyMnzO4 with Mn4+ was detected at 300–500 °C. At high temperatures (900–1000 °C), tenorite disappeared and a consecutive crystallization of 2CuO·MgO (gueggonite) was observed. The high-temperature transformation of oxide phases led to a formation of CuI oxides accompanied by oxygen evolution. The DTA curve of Ni–Mg–Mn sample exhibited two endothermic effects characteristic for hydrotalcite-like compounds. The first one with minimum at 190 °C can be ascribed to a loss of interlayer water, the second one with minimum at 305 °C to the sample decomposition. Heating of the Ni–Mg–Mn sample at 300 °C led to the onset of crystallization of oxide phases identified as NixMgyMnzO4 spinel, (Ni,Mg)O oxide containing Mn4+ cations, and easily reducible XRD-amorphous species, probably free MnIII,IV oxides. At 600 °C (Raman spectroscopy) and 700 °C (XRD), the (Ni,Mg)6MnO8 oxide with murdochite structure together with spinel phase were detected. Only spinel and (Ni,Mg)O were found after heating at 900 °C and higher temperatures. Temperature-programmed reduction (TPR) profiles of calcined Cu–Mg–Mn samples exhibited a single reduction peak with maximum around 250 °C. The highest H2 consumption was observed for the sample calcined at 800 °C. The reduction of Ni–Mg–Mn samples proceeded by a more complex way and the TPR profiles reflected the phase composition changing depending on the calcination temperature.  相似文献   

12.
Chromium oxide supported on alumina and titania supports was modified with oxides of sodium, vanadium and molybdenum. The modified and unmodified chromium oxide catalysts were characterized by several techniques. The presence of surface chromium oxide and surface molybdenum and vanadium oxide species was detected in the unmodified and molybdenum and vanadium oxide modified supported chromium oxide catalysts. The reducibility (Tmax and H/Cr ratio) of the surface chromium species was not affected for the vanadium and molybdenum oxide modified catalysts; however, the reducibility changed noticeably for sodium modified supported chromium oxide catalysts. Studies of the reactivity of the ODH of propane revealed the effect of modifiers on the reactivity properties of the surface chromium oxide species. The activity and propene selectivity decreased for sodium modified supported chromium oxide catalysts. However, the activity increased for vanadium oxide modified catalysts and was similar for molybdenum oxide modified catalysts irrespective of the support. The propene selectivity was higher for molybdenum oxide modified chromium oxide catalysts. However, the propene selectivity for vanadium oxide modified catalysts depends on the support since it appears that the inherent selectivity of the surface vanadium oxide species is reflected.  相似文献   

13.
The effect of Te addition over Mo–V–O catalysts supported on alumina is discussed for the ammoxidation of propane to acrylonitrile. Catalyst composition and atmosphere of activation are evaluated. Catalysts are characterized before and after catalytic reaction by XPS, XRD and in situ Raman spectroscopies. The absence of Te in catalysts formulation and the presence of a high amount of vanadium induce the presence of V5+ species and the formation of V2O5 oxide; associated with a decrease in acrylonitrile selectivity. The presence of Mo-based polyacids structures decreases the selectivity to acrylonitrile. V5+ sites are responsible of propane activation and of the subsequent -H abstraction to form the intermediate propylene. Then, a Mo–V rutile-like structure in which vanadium species are reduced as V4+, is responsible for nitrogen insertion and acrylonitrile formation. The formation of such structure is favoured when Te is added to catalysts and is promoted during propane ammoxidation.  相似文献   

14.
Heterogeneous oxidation of 2-picoline over binary P–Ti, Sb–Ti, P–Sb, and V–Ti oxide catalysts was studied over the temperature range of 200–300°C. The vanadium–titanium catalysts based on titanium dioxide (anatase) were found to be the most selective for picolinic acid. With binary catalysts containing 20–50% of vanadium pentoxide, the selectivity for picolinic acid was 19–22% at the 36–74% conversion of 2-picoline. A distinguishing feature of these catalysts is regular surface stacking of V2O5 and TiO2 crystallites.  相似文献   

15.
Cerium was introduced into a USY-based catalyst using three methodologies: precipitation, impregnation and ionic-exchange. The CeUSY catalysts were poisoned with vanadium and deactivated with steam at 1073 K. The catalysts were characterized by HRTEM-EDX, FTIR, BET, EPR, XPS and by the test of catalytic dehydration of 2-propanol. The results indicate that the presence of a V–Ce–EFAL multi-component interaction strongly affects the vanadium reduction and its migration, also inhibiting the cerium oxide sintering. HRTEM measurements with analysis of energy dispersive X-rays on the impregnated catalyst revealed a preferential V–Ce interaction in the extra framework aluminum (EFAL) domains. The FTIR results strongly support that this V–Ce–EFAL interaction occurs via hydroxyl groups. The impregnated catalysts showed greater vanadium tolerance than catalysts prepared by other methodologies of cerium introduction.  相似文献   

16.
A series of bifunctional Cu–ZnO–ZrO2/H-Y catalysts of different compositions were prepared by coprecipitating sedimentation method and were characterized by surface area and XRD analyses. The catalytic performance in synthesis of tetrahydrofuran was evaluated and optimized in a three-phase slurry batch reactor. The experimental results showed that the appropriate ratio of Cu/ZnO in the hydrogenation catalyst was 50/45, for which the conversion of maleic anhydride (MA) and selectivity of tetrahydrofuran (THF) reached 100% and 46%, respectively, at 50 bar and 493 K after 6 h of operation. Also, according to these results, it was demonstrated that the incorporation of zirconium oxide in the catalyst formulation enhanced the catalytic activity, and tetrahydrofuran selectivity was increased to 55%. Ultimately, it was concluded that the bifunctional catalyst of Cu–ZnO–ZrO2/H-Y was an appropriate catalyst to produce THF from MA with high activity, selectivity and stability.  相似文献   

17.
The performance of V–Ca–O catalysts for the oxidative dehydrogenation of propane has been studied for the first time, being compared with that of similar V–Mg–O catalysts, and their differences are interpreted in terms of their physico-chemical properties. The VCaO catalyst showed the same initial selectivity to propene as the most selective VMgO composition, but it decreased faster with increasing propane conversion. Vanadium species present in the catalyst surface were different for the two supports: isolated V5+ tetrahedra on CaO and magnesium orthovanadate and pyrovanadate on MgO. The intrinsic activity of isolated vanadium centres in the surface of the V–Ca–O catalyst was more than one order of magnitude higher than that of dimeric or polymeric tetahedral species in the magnesium-containing catalysts. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
The effects of incorporating tungsten into the traditional Co–Mo–K/γ–Al2O3 catalysts on the catalytic performances for water–gas shift reaction were investigated. Activity tests showed that W-promoted Co–Mo–K/γ–Al2O3 catalysts exhibited higher activity than W-free Co–Mo–K/γ–Al2O3 catalyst. Raman and H2-TPR studies indicated that part of the octahedrally coordinated Mo–O species on Co–Mo–K catalysts transformed into tetrahedrally coordinated Mo–O species in the presence of W promoter.  相似文献   

19.
The influence of potassium on the structure and properties of alumina-supported vanadium oxide catalysts has been studied by in situ Raman spectroscopy, temperature-programmed reduction (TPR), X-ray photoelectron spectroscopy (XPS), a probe reaction of acid/base–redox sites (methanol chemisorption) and tested in oxidative dehydrogenation (ODH) of propane. Potassium coordinates to surface vanadium oxide species altering its structure but does not form bulk compounds, possibly because the total V+K coverage does not reach the monolayer coverage on alumina. The interaction of K with V weakens the terminal V=O bond. K-doped alumina (KAl)-supported vanadia catalysts show lower acidity, a decrease of reducibility and a decrease of propane conversion values. These trends do not correspond with the changes in the terminal V=O bond energy. Thus, it appears that the terminal V=O bond of surface vanadium oxide species is not the active site for propane ODH, oxidation of methanol to formaldehyde and for the reduction of surface vanadium oxide species by hydrogen. Potassium also changes the acid–base characteristic of the system and decreases the acidic character of surface vanadia. This shift in the acid–base character to a more basic system must also account for the better selectivity in propane ODH due to a variation in the interaction between the intermediates and the surface.  相似文献   

20.
Catalysts belonging to the Mo–V–Nb–Te–O system have been prepared with both a slurry method and hydrothermal synthesis and were tested for propane and propylene ammoxidation to acrylonitrile. All samples were characterized with BET, XRD, ICP and XPS. The catalysts were found to consist of three phases, to which activity and selectivity correlations were made. The results indicate that both an orthorhombic phase and a hexagonal phase are needed to have an active and selective catalyst. The orthorhombic phase is the most active for propane conversion although less selective than the hexagonal phase for the conversion of formed propylene to acrylonitrile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号