首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This letter makes a comparison between Q-band 0.15 $mu{rm m}$ pseudomorphic high electron mobility transistor (pHEMT) and metamorphic high electron mobility transistor (mHEMT) stacked-LO subharmonic upconversion mixers in terms of gain, isolation and linearity. In general, a 0.15 $mu{rm m}$ mHEMT device has a higher transconductance and cutoff frequency than a 0.15 $mu{rm m}$ pHEMT does. Thus, the conversion gain of the mHEMT is higher than that of the pHEMT in the active Gilbert mixer design. The Q-band stacked-LO subharmonic upconversion mixers using the pHEMT and mHEMT technologies have conversion gain of $-$7.1 dB and $-$0.2 dB, respectively. The pHEMT upconversion mixer has an ${rm OIP}_{3}$ of $-$12 dBm and an ${rm OP}_{1 {rm dB}}$ of $-$24 dBm, while the mHEMT one shows a 4 dB improvement on linearity for the difference between the ${rm OIP}_{3}$ and ${rm OP}_{1 {rm dB}}$. Both the chip sizes are the same at 1.3 mm $times$ 0.9 mm.   相似文献   

2.
A linearization technique is proposed in which low-frequency second-order-intermodulation $({rm IM}_{2})$ is generated and injected to suppress the third-order intermodulation $({rm IM}_{3})$. The proposed linearization technique is applied to both a low-noise amplifier (LNA) and a down-conversion mixer in an RF receiver front-end (RFE) working at 900 MHz. Fabricated in a 0.18$ mu{hbox{m}}$ CMOS process and operated at 1.5 V supply with a total current of 13.1 mA, the RFE delivers 22 dB gain with 5.3 dB noise figure (NF). The linearization technique achieves around 20 dB ${rm IM}_{3}$ suppression and improves the RFE's ${rm IIP}_{3}$ from $-$ 10.4 dBm to 0.2 dBm without gain reduction and noise penalty while requiring only an extra current of 0.1 mA.   相似文献   

3.
A W-band (76–77 GHz) active down-conversion mixer has been demonstrated using low leakage (higher ${rm V}_{{rm T}}$) NMOS transistors of a 65-nm digital CMOS process with 6 metal levels. It achieves conversion gain of ${-}8$ dB at 76 GHz with a local oscillation power of 4 dBm (${sim-}2$ dBm after de-embedding the on-chip balun loss), and 3 dB bandwidth of 3 GHz. The SSB noise figures are 17.8–20 dB (11.3–13.5 dB after de-embedding on-chip input balun loss) between 76 and 77 GHz. ${rm IP}_{1{rm dB}}$ is ${-}6.5$ dBm and IIP3 is 2.5 dBm (${sim-}13$ and ${sim}-4$ dBm after de-embedding the on-chip balun loss). The mixer consumes 5 mA from a 1.2 V supply.   相似文献   

4.
A wideband low-noise amplifier (LNA) based on the current-reused cascade configuration is proposed. The wideband input-impedance matching was achieved by taking advantage of the resistive shunt–shunt feedback in conjunction with a parallel LC load to make the input network equivalent to two parallel $RLC$-branches, i.e., a second-order wideband bandpass filter. Besides, both the inductive series- and shunt-peaking techniques are used for bandwidth extension. Theoretical analysis shows that both the frequency response of input matching and noise figure (NF) can be described by second-order functions with quality factors as parameters. The CMOS ultra-wideband LNA dissipates 10.34-mW power and achieves ${ S}_{11}$ below $-$8.6 dB, ${ S}_{22}$ below $-$10 dB, ${ S}_{12}$ below $-$26 dB, flat ${ S}_{21}$ of 12.26 $pm$ 0.63 dB, and flat NF of 4.24 $ pm$ 0.5 dB over the 3.1–10.6-GHz band of interest. Besides, good phase linearity property (group-delay variation is only $pm$22 ps across the whole band) is also achieved. The analytical, simulated, and measured results agree well with one another.   相似文献   

5.
Bias-temperature-stress (BTS) induced electrical instability of the RF sputter amorphous In-Ga-Zn-O (a-IGZO) thin-film transistors (TFTs) was investigated. Both positive and negative BTS were applied and found to primarily cause a positive and negative voltage shift in transfer $(I _{rm DS} -V _{rm GS})$ characteristics, respectively. The time evolution of bulk-state density $(N _{rm BS})$ and characteristic temperature of the conduction-band-tail-states $(T _{G})$ are extracted. Since both values showed only minor changes after BTS, the results imply that observed shift in TFT $I _{rm DS} -V _{rm GS}$ curves were primarily due to channel charge injection/trapping rather than defect states creation. We also demonstrated the validity of using stretch-exponential equation to model both positive and negative BTS induced threshold voltage shift $(Delta V _{rm th})$ of the a-IGZO TFTs. Stress voltage and temperature dependence of $Delta V _{rm th}$ evolution are described.   相似文献   

6.
A 23 GHz electrostatic discharge-protected low-noise amplifier (LNA) has been designed and implemented by 45 nm planar bulk-CMOS technology with high-$Q$ above-IC inductors. In the designed LNA, the structure of a one-stage cascode amplifier with source inductive degeneration is used. All high- $Q$ above-IC inductors have been implemented by thin-film wafer-level packaging technology. The fabricated LNA has a good linearity where the input 1 dB compression point $({rm IP}_{{-}1~{rm dB}})$ is ${- 9.5}~{rm dBm}$ and the input referred third-order intercept point $(P _{rm IIP3})$ is ${+ 2.25}~{rm dBm}$. It is operated with a 1 V power supply drawing a current of only 3.6 mA. The fabricated LNA has demonstrated a 4 dB noise figure and a 7.1 dB gain at the peak gain frequency of 23 GHz, and it has the highest figure-of-merit. The experimental results have proved the suitability of 45 nm gate length bulk-CMOS devices for RF ICs above 20 GHz.   相似文献   

7.
This letter presents a high conversion gain double-balanced active frequency doubler operating from 36 to 80 GHz. The circuit was fabricated in a 200 GHz ${rm f}_{rm T}$ and ${rm f}_{max}$ 0.18 $mu$m SiGe BiCMOS process. The frequency doubler achieves a peak conversion gain of 10.2 dB at 66 GHz. The maximum output power is 1.7 dBm at 66 GHz and ${-}3.9$ dBm at 80 GHz. The maximum fundamental suppression of 36 dB is observed at 60 GHz and is better than 20 dB from 36 to 80 GHz. The frequency doubler draws 41.6 mA from a nominal 3.3 V supply. The chip area of the active frequency doubler is 640 $mu$m $,times,$424 $mu$m (0.272 mm $^{2}$) including the pads. To the best of authors' knowledge, this active frequency doubler has demonstrated the highest operating frequency with highest conversion gain and output power among all other silicon-based active frequency doublers reported to date.   相似文献   

8.
Deeply-etched ${hbox{SiO}}_{2}$ optical ridge waveguides are fabricated and characterized. A detailed discussion of the fabrication process (especially for the deep etching process) is presented. The measured propagation losses for the fabricated waveguides with different core widths range from $0.33sim {hbox {0.81}}~{hbox {dB}}/{hbox {mm}}$. The loss is mainly caused by the scattering due to the sidewall roughness. The losses in bending sections are also characterized, which show the possibility of realizing a small bending radius (several tens of microns). 1 $,times {rm N}$ ( ${rm N}=2$, 4, 8) multimode interference couplers based on the deeply-etched ${hbox{SiO}}_{2}$ ridge waveguide are also fabricated and show fairly good performances.   相似文献   

9.
A 17 GHz low-power radio transceiver front-end implemented in a 0.25 $mu{hbox {m}}$ SiGe:C BiCMOS technology is described. Operating at data rates up to 10 Mbit/s with a reduced transceiver turn-on time of 2 $mu{hbox {s}}$, gives an overall energy consumption of 1.75 nJ/bit for the receiver and 1.6 nJ/bit for the transmitter. The measured conversion gain of the receiver chain is 25–30 dB into a 50 $Omega$ load at 10 MHz IF, and noise figure is 12 $pm$0.5 dB across the band from 10 to 200 MHz. The 1-dB compression point at the receiver input is $-$37 dBm and ${hbox{IIP}}_{3}$ is $-$25 dBm. The maximum saturated output power from the on-chip transmit amplifier is $-$1.4 dBm. Power consumption is 17.5 mW in receiver mode, and 16 mW in transmit mode, both operating from a 2.5 V supply. In standby, the transceiver supply current is less than 1 $mu{hbox {A}}$.   相似文献   

10.
Distortion in Current Commutating Passive CMOS Downconversion Mixers   总被引:2,自引:0,他引:2  
CMOS passive mixer linearity is analyzed using a Volterra-series analysis and closed-form expressions for ${rm IIP}_{2}$, two-tone ${rm IIP}_{3}$, and cross-modulation ${rm IIP}_{3}$ are presented, exhibiting dependence upon the mixer source and load impedances. Design guidelines are suggested for improving the mixer linearity performance. Accurate expressions are presented for the input impedance of an ideal passive mixer with an arbitrary load impedance. The calculations are in close agreement with the measured results and the simulated response.   相似文献   

11.
A compact-sized electrically tunable ${rm TE}$- ${rm TM}$ mode splitter composed of a mode converter and an asymmetric Y-branch structure is presented. The asymmetric Y-branch consists of a straight and a bent waveguides to split two polarization modes based on the mode-sorting effect. To shorten the device length, a simplified coherently coupled-bending structure is utilized for the bent waveguide. Experimental results show that the device length is reduced about 52%, extinction ratios of both ${rm TE}$ and ${rm TM}$ modes are higher than 25 dB, yet the applied voltage is not significantly increased.   相似文献   

12.
We provide the first report of the structural and electrical properties of $hbox{TiN/ZrO}_{2}$/Ti/Al metal–insulator–metal capacitor structures, where the $hbox{ZrO}_{2}$ thin film (7–8 nm) is deposited by ALD using the new zirconium precursor ZrD-04, also known as Bis(methylcyclopentadienyl) methoxymethyl. Measured capacitance–voltage ($C$$V$) and current–voltage ( $I$$V$) characteristics are reported for premetallization rapid thermal annealing (RTP) in $hbox{N}_{2}$ for 60 s at 400 $^{circ}hbox{C}$, 500 $^{circ}hbox{C}$, or 600 $^{ circ}hbox{C}$. For the RTP at 400 $^{circ}hbox{C}$ , we find very low leakage current densities on the order of nanoamperes per square centimeter at a gate voltage of 1 V and low capacitance equivalent thickness values of $sim$ 0.9 nm at a gate voltage of 0 V. The dielectric constant of $ hbox{ZrO}_{2}$ is 31 $pm$ 2 after RTP treatment at 400 $^{circ}hbox{C}$.   相似文献   

13.
In this letter, we investigate the effects of oxide traps induced by various silicon-on-insulator (SOI) thicknesses $({T}_{rm SOI})$ on the performance and reliability of a strained SOI MOSFET with SiN-capped contact etch stop layer (CESL). Compared to the thicker ${T}_{rm SOI}$ device, the thinner ${T}_{rm SOI}$ device with high-strain CESL possesses a higher interface trap $({N}_{rm it})$ density, leading to degradation in the device performance. On the other hand, however, the thicker ${T}_{rm SOI}$ device reveals inferior gate oxide reliability. From low-frequency noise analysis, we found that thicker ${T}_{rm SOI}$ has a higher bulk oxide trap $({N}_{rm BOT})$ density, which is induced by larger strain in the gate oxide film and is mainly responsible for the inferior TDDB reliability. Presumably, the gate oxide film is bended up and down for the p- and nMOSFETs, respectively, by the net stress in thicker ${T}_{rm SOI}$ devices in this strain technology.   相似文献   

14.
A wide band CMOS LC-tank voltage controlled oscillator (VCO) with small VCO gain $(K_{VCO})$ variation was developed. For small $K_{VCO}$ variation, serial capacitor bank was added to the LC-tank with parallel capacitor array. Implemented in a 0.18 $mu{rm m}$ CMOS RF technology, the proposed VCO can be tuned from 4.39 GHz to 5.26 GHz with the VCO gain variation less than 9.56%. While consuming 3.5 mA from a 1.8 V supply, the VCO has $-$ 113.65 dBc/Hz phase noise at 1 MHz offset from the carrier.   相似文献   

15.
We present a detailed experimental and theoretical study of the ultrahigh repetition rate AO $Q$ -switched ${rm TEM}_{00}$ grazing incidence laser. Up to 2.1 MHz $Q$-switching with ${rm TEM}_{00}$ output of 8.6 W and 2.2 MHz $Q$ -switching with multimode output of 10 W were achieved by using an acousto-optics $Q$ -switched grazing-incidence laser with optimum grazing-incidence angle and cavity configuration. The crystal was 3 at.% neodymium doped Nd:YVO$_{4}$ slab. The pulse duration at 2 MHz repetition rate was about 31 ns. The instabilities of pulse energy at 2 MHz repetition rate were less than ${pm}6.7hbox{%}$ with ${rm TEM}_{00}$ operation and ${pm}3.3hbox{%}$ with multimode operation respectively. The modeling of high repetition rate $Q$-switched operation is presented based on the rate equation, and with the solution of the modeling, higher pump power, smaller section area of laser mode, and larger stimulated emission cross section of the gain medium are beneficial to the $Q$-switched operation with ultrahigh repetition rate, which is in consistent with the experimental results.   相似文献   

16.
We have demonstrated p-type field effect transistors (p-FETs) devices using a TaCNO metal gate for the first time. These p-FETs have threshold voltage values of $-$ 0.4 and $-$ 0.25 V for HfSiON and HfSiO gate dielectrics, respectively, with equivalent oxide thickness of 1.6–1.7 nm. The TaCNO metal shows a high effective work function (eWF) of 4.89 eV on thick $hbox{SiO}_{2}$ interface layer, although the eWF rolls off with reducing EOT. Excellent transistor characteristics are achieved, with $I_{rm on}$ of $hbox{375} muhbox{A}/muhbox{m}$ at $I_{rm off} = hbox{60 nA}$, for $V_{rm dd} = hbox{1.1} hbox{V}$ .   相似文献   

17.
In this paper, we show that Sudoku puzzles can be formulated and solved as a sparse linear system of equations. We begin by showing that the Sudoku ruleset can be expressed as an underdetermined linear system: ${mmb{Ax}}={mmb b}$, where ${mmb A}$ is of size $mtimes n$ and $n>m$. We then prove that the Sudoku solution is the sparsest solution of ${mmb{Ax}}={mmb b}$, which can be obtained by $l_{0}$ norm minimization, i.e. $minlimits_{mmb x}Vert{mmb x}Vert_{0}$ s.t. ${mmb{Ax}}={mmb b}$. Instead of this minimization problem, inspired by the sparse representation literature, we solve the much simpler linear programming problem of minimizing the $l_{1}$ norm of ${mmb x}$, i.e. $minlimits_{mmb x}Vert{mmb x}Vert_{1}$ s.t. ${mmb{Ax}}={mmb b}$, and show numerically that this approach solves representative Sudoku puzzles.   相似文献   

18.
This letter reports on 10-GHz and 20-GHz channel-spacing arrayed waveguide gratings (AWGs) based on InP technology. The dimensions of the AWGs are 6.8$,times,$8.2 mm$^{2}$ and 5.0$,times,$6.0 mm$^{2}$, respectively, and the devices show crosstalk levels of $-$12 dB for the 10-GHz and $-$17 dB for the 20-GHz AWG without any compensation for the phase errors in the arrayed waveguides. The root-mean-square phase errors for the center arrayed waveguides were characterized by using an optical vector network analyzer, and are 18 $^{circ}$ for the 10-GHz AWG and 28$^{circ}$ for the 10-GHz AWG.   相似文献   

19.
A 250 MHz analog baseband chain for Ultra-Wideband was implemented in a 1.2 V 0.13 $mu$ m CMOS process. The chip has an active area of 0.8 mm $^{2}$. In the analog baseband, PGAs and filters are carried out by current-mode amplifiers to achieve wide bandwidth and wide dynamic range of gain, as well as low noise and high linearity. Besides, a current-mode Sallen–Key low-pass filter is adopted for effective rejection of out-of-band interferers. A 6th-order Chebyshev low-pass filter realized in ${rm G}_{rm m}$ -C topology is designed in the baseband chain for channel selection. Digitally-assisted DC-offset calibration improves second-order distortion of the entire chain. The design achieves a maximum gain of 73 dB and a dynamic range of 82 dB. Measured noise figure is 14 dB, an IIP3 of ${-}$6 dBV, and IIP2 of ${-}$5 dBV at the maximum gain mode. The analog baseband chain consumes 56.4 mA under supply of 1.2 V.   相似文献   

20.
Ultra-compact phase shifters are presented. The proposed phase-shifting circuits utilize the lumped element all-pass networks. The transition frequency of the all-pass network, which determines the size of the circuit, is set to be much higher than the operating frequency. This results in a significantly small chip size of the phase shifter. To verify this methodology, 5-bit phase shifters have been fabricated in the $S$ - and $C$ -band. The $S$ -band phase shifter, with a chip size of 1.87 mm $,times,$0.87 mm (1.63 mm $^{2}$), has achieved an insertion loss of ${hbox{6.1 dB}} pm {hbox{0.6 dB}}$ and rms phase-shift error of less than 2.8$^{circ}$ in 10% bandwidth. The $C$ -band phase shifter, with a chip size of 1.72 mm $,times,$0.81 mm (1.37 mm $^{2}$), has demonstrated an insertion loss of 5.7 dB $pm$ 0.8 dB and rms phase-shift error of less than 2.3 $^{circ}$ in 10% bandwidth.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号