首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Direct metal deposition (DMD) is a rapid laser-aided deposition method that can be used to manufacture near-net-shape components from their computer aided design (CAD) files. The method can be used to produce fully dense or porous metallic parts. The Ti-6Al-4V alloy is widely used as an implantable material mainly in the application of orthopedic prostheses because of its high strength, low elastic modulus, excellent corrosion resistance, and good biocompatibility. In the present study, Ti-6Al-4V scaffold has been fabricated by DMD technology for patient specific bone tissue engineering. Good geometry control and surface finish have been achieved. The structure and properties of the scaffolds were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and tension test. The microstructures of laser-deposited Ti-6Al-4V scaffolds are fine Widmanstätten in nature. The tensile and yield strengths of the as-deposited Ti-6Al-4V were 1163 ± 22 and 1105 ± 19 MPa, respectively, which are quite higher than the ASTM limits (896 and 827 MPa) for Ti-6Al-4V implants. However, the ductility of the as-deposited sample was very low (~4 pct), which is well below the ASTM limit (10 pct). After an additional heat treatment (sample annealed at 950 °C followed by furnace cooling), both strength (UTS ~ 1045 ± 16, and YS ~ 959 ± 12 MPa) and ductility (~10.5 ± 1 pct) become higher than ASTM limits for medical implants.  相似文献   

2.
The effects of postweld heat treatment (PWHT) on 3.2-mm- and 5.1-mm-thick Ti-6Al-4V butt joints welded using a continuous wave (CW) 4-kW Nd:YAG laser welding machine were investigated in terms of microstructural transformations, welding defects, and hardness, as well as global and local tensile properties. Two postweld heat treatments, i.e., stress-relief annealing (SRA) and solution heat treatment followed by aging (STA), were performed and the weld qualities were compared with the as-welded condition. A digital image correlation technique was used to determine the global tensile behavior for the transverse welding samples. The local tensile properties including yield strength and maximum strain were determined, for the first time, for the laser-welded Ti-6Al-4V. The mechanical properties, including hardness and the global and local tensile properties, were correlated to the microstructure and defects in the as-welded, SRA, and STA conditions.  相似文献   

3.
The linear friction welding behavior of Ti-6Al-4V was investigated using varying processing conditions of frequency (15 to 70 Hz), amplitude (1 to 3 mm), pressure (50 to 90 MPa), and axial shortening (1 to 2 mm). Examination of linear friction welded Ti-6Al-4V using microscopic techniques indicated that the process requires certain critical conditions at the interface and its adjacent region to be reached for producing joints without structural defects along the weld centerline, such as voids or oxide inclusions. Characterization of the weldments included analysis of the microstructural features of the weld and thermomechanically affected zones (TMAZs) in relation to the parent material. It was observed that in the weld region, exposure to supertransus temperatures (>995 °C) combined with hot-deformation working and rapid cooling after joining produced recrystallization of the beta grain structure that had a Widmanstätten alpha-beta transformation microstructure. In the TMAZ, the bimodal microstructure of the parent material was deformed and the presence of elongated alpha grains with broken beta-phase particles was established. Through examination of the mechanical properties, using microhardness and tensile testing, the integrity of the joints was determined in order to assess the impact of the various processing parameters and to define the optimum welding conditions.  相似文献   

4.
Laser beam welding is based on interaction between the laser beam and parent metals. Methods have been developed in recent years to produce joints of most light metals and their combinations. It provides good weld joint to simplify the structure and reduce the weight and cost to meet the main concerns of the aircraft industry. To achieve these, Ti6Al4V and AA2024 alloy sheets with a thickness of 1.0 mm have been welded with butt joint configuration using pulsed Nd:YAG laser beam welding without groove and filler metal. The weldment has been subjected to testings such as surface roughness, microstructure, hardness, tensile strength and distortion. Test results reveal that laser beam welding is very much suitable for joining Ti6Al4V/AA2024 alloys, while focusing from aluminium side.  相似文献   

5.
Laser butt welds were fabricated in a titanium alloy (Ti-6A1-4V, AMS 4911-Tal0 BSS, annealed) using a Control Laser 2 kW CW CO2 laser. The relationships between the weld microstructure and mechanical properties are described and compared to the theoretical thermal history of the weld zone as calculated from a three-dimensional heat transfer model of the process. The structure of the weld zone was examined by radiography to detect any gross porosity as well as by both optical and electron microscopy in order to identify the microstructure. The oxygen pick-up during gas shielded laser welding was analyzed to correlate further with the observed mechanical properties. It was found that optimally fabricated laser welds have a very good combination of weld microstructure and mechanical properties, ranking this process as one which can produce high quality welds.  相似文献   

6.
CO2 laser beam welding of 6061-T6 aluminum alloy thin plate   总被引:1,自引:0,他引:1  
Laser beam welding is an attractive welding process for age-hardened aluminum alloys, because its low heat input minimizes the width of weld fusion and heat-affected zones (HAZs). In the present work, 1-mm-thick age-hardened Al-Mg-Si alloy, 6061-T6, plates were welded with full penetration using a 2.5-kW CO2 laser. Fractions of porosity in the fusion zones were less than 0.05 pct in bead-on-plate welding and less than 0.2 pct in butt welding with polishing the groove surface before welding. The width of a softened region in the-laser beam welds was less than 1/4 times that of a tungsten inert gas (TIG) weld. The softened region is caused by reversion of strengthening β″ (Mg2Si) precipitates due to weld heat input. The hardness values of the softened region in the laser beam welds were almost fully recovered to that of the base metal after an artificial aging treatment at 448 K for 28.8 ks without solution annealing, whereas those in the TIG weld were not recovered in a partly reverted region. Both the bead-on-plate weld and the butt weld after the postweld artificial aging treatment had almost equivalent tensile strengths to that of the base plate.  相似文献   

7.
Laser keyhole welding of Ti-6Al-4V titanium alloy to AZ31B magnesium alloy was developed, and the correlations of process parameters, joint properties, and bonding mechanism were studied. The results show that the offset from the laser beam center on AZ31B side to the edge of the weld seam plays a big role in the joint properties by changing the power density irradiated at the Ti–Mg initial interface. The optimal range of the offset is 0.3 to 0.4mm in the present study. Some lamellar and granular Ti-rich mixtures are observed in the fusion zone, which is formed by intermixing melted Ti-6Al-4V with liquid AZ31B. The maximum ultimate tensile strength of the joints reaches 266 MPa. Furthermore, the fracture surface consists of scraggly remaining weld metal and smooth Ti surface. The higher the failure strength, the smaller the proportion of smooth Ti surface to whole interface is. Finally, the bonding mechanism of the interfacial layer is summarized by the morphologies and test results of fracture surfaces.  相似文献   

8.
STATEMENT OF PROBLEM: Titanium and its alloys are more commonly used in prosthodontics and welding has become the most common modality for their joining. Studies on the welding of titanium and its alloys have not quantified this value, though its importance has been suggested. PURPOSE: This study compared the strength and properties of the joint achieved at various butt joint gaps by the arc-welding of cast Ti-6Al-4V alloy tensile bars in an argon atmosphere. MATERIAL AND METHODS: Forty of 50 specimens were sectioned and welded at four gaps. All specimens underwent tensile testing to determine ultimate tensile strength and percentage elongation, then oxygen analysis and scanning electron microscopy. RESULTS: As no more than 3 samples in any group of 10 actually fractured in the weld itself, a secondary analysis that involved fracture location was initiated. There were no differences in ultimate tensile strength or percentage elongation between specimens with weld gaps of 0.25, 0.50, 0.75, and 1.00 mm and the as-cast specimens. There were no differences in ultimate tensile strength between specimens fracturing in the weld and those fracturing in the gauge in welded specimens; however, as-cast specimens demonstrated a higher ultimate tensile strength than welded specimens that fractured in the weld. Specimens that fractured in the weld site demonstrated less ductility than those that fractured in the gauge in both welded and as-cast specimens, as confirmed by scanning electron microscopy examination. The weld wire showed an oxygen scavenging effect from the as-cast parent alloy. CONCLUSIONS: The effects of the joint gap were not significant, whereas the characteristics of the joint itself were, which displayed slightly lower strength and significantly lower ductility (and thus decreased toughness). The arc-welding of cast titanium alloy in argon atmosphere appears to be a reliable and efficient prosthodontic laboratory modality producing predictable results, although titanium casting and joining procedures must be closely controlled to minimize heat effects and oxygen contamination.  相似文献   

9.
This article presents a detailed assessment of microwave (MW) heating, isothermal sintering, and the resulting tensile properties of commercially pure Ti (CP-Ti), Ti-6Al-4V, and Ti-10V-2Fe-3Al (wt pct), by comparison with those fabricated by conventional vacuum sintering. The potential of MW sintering for titanium fabrication is evaluated accordingly. Pure MW radiation is capable of heating titanium powder to ≥1573 K (1300 °C), but the heating response is erratic and difficult to reproduce. In contrast, the use of SiC MW susceptors ensures rapid, consistent, and controllable MW heating of titanium powder. MW sintering can consolidate CP-Ti and Ti alloys compacted from ?100 mesh hydride-dehydride (HDH) Ti powder to ~95.0 pct theoretical density (TD) at 1573 K (1300 °C), but no accelerated isothermal sintering has been observed over conventional practice. Significant interstitial contamination occurred from the Al2O3-SiC insulation–susceptor package, despite the high vacuum used (≤4.0 × 10?3 Pa). This leads to erratic mechanical properties including poor tensile ductility. The use of Ti sponge as impurity (O, N, C, and Si) absorbers can effectively eliminate this problem and ensure good-to-excellent tensile properties for MW-sintered CP-Ti, Ti-10V-2Fe-3Al, and Ti-6Al-4V. The mechanisms behind various observations are discussed. The prime benefit of MW sintering of Ti powder is rapid heating. MW sintering of Ti powder is suitable for the fabrication of small titanium parts or titanium preforms for subsequent thermomechanical processing.  相似文献   

10.
Ti-6Al-4V machining chips were recycled using equal channel angular pressing. The as-recycled material was fully dense and well bonded, but contained chip boundaries decorated by entrapped surface oxide, giving rise to brittleness in tensile loading. Annealing at high temperatures was effective in removing the oxide. The times required for completely dissolving the oxide layers were calculated using models based on oxygen diffusion in α- and β-Ti, respectively. It is shown that the oxide dissolution is rapid, taking from several minutes to less than one second at temperatures between 973 K and 1323 K (700 °C and 1050 °C) for thicknesses of up to 1 μm. In addition, bands of grains finer than those in the matrix occurred in the vicinity of the prior chip boundaries, caused by the enhanced level of oxygen diffusing away from the dissolving oxide which hindered local grain growth. It would take hours of annealing to homogenize the grain size and composition. The as-recycled material was subjected to conventional mill-annealing, leading to a finer microstructure with superior yield strength (~1150 MPa) and equivalent tensile ductility (~25 pct), compared to a commercial mill-annealed Ti-6Al-4V.  相似文献   

11.
The linear friction welding (LFW) process is finding increasing use as a manufacturing technology for the production of titanium alloy Ti-6Al-4V aerospace components. Computational models give an insight into the process, however, there is limited experimental data that can be used for either modeling inputs or validation. To address this problem, a design of experiments approach was used to investigate the influence of the LFW process inputs on various outputs for experimental Ti-6Al-4V welds. The finite element analysis software DEFORM was also used in conjunction with the experimental findings to investigate the heating of the workpieces. Key findings showed that the average interface force and coefficient of friction during each phase of the process were insensitive to the rubbing velocity; the coefficient of friction was not coulombic and varied between 0.3 and 1.3 depending on the process conditions; and the interface of the workpieces reached a temperature of approximately approximately 1273 K (1000 °C) at the end of phase 1. This work has enabled a greater insight into the underlying process physics and will aid future modeling investigations.  相似文献   

12.
The superplastic deformation properties of Ti-6 pct Al-4 pct V and modified alloys containing 1/4 pct, 1/2 pct, 1 pct, and 2 pct of either cobalt or nickel have been investigated in the temperature range 950 to 750 °C. The results show that both cobalt and nickel modified alloys have reduced flow stresses, in comparison with Ti-6 pct Al-4 pct V, the reductions being particularly marked at the lower temperatures and lower strain rates. The results are shown to be consistent with an isostress model for the deformation of (α + β) two-phase alloys in which the varying β volume fractions and differing diffusivities of titanium, cobalt, or nickel in the β phase are taken into account.  相似文献   

13.
Hydrogenation and dehydrogenation, that is, thermochemical processing (THP) and its variation with a post-heat treatment (THPH), are investigated in order to improve the balance of strength, elongation, and fatigue strength of cast Ti-6Al-7Nb and Ti-6Al-4V for dental applications. Microstructures of both cast alloys change from coarse Widmanst?tten α structure to super fine α structure with an average diameter of 3 μm by conducting THP or THPH. Tensile strength and fatigue limit of cast Ti-6Al-7Nb and Ti-6Al-4V increase by around 10 and 40 pct, respectively, as compared with those of both as-cast alloys. The balance of strength and ductility of cast Ti-6Al-7Nb is improved by conducting THPH as compared with the case where THP is conducted. This improvement is due to the plastic deformability of unstable β phase because the lattice constant of β phase in each alloy conducted with THPH is much greater than that of each as-cast alloy.  相似文献   

14.
Friction stir processing of three variants of Ti-6Al-4V was conducted at processing temperatures both above and below the β-transus. The base metal substrates that were processed included wrought base metal in the α/β-processed and β-processed condition and weld overlay that was deposited using the gas tungsten arc welding process. Friction stir processing below the β-transus for the α/β-processed condition and the weld overlay produced fully equiaxed-α grains with submicron grain size, while in the β-processed condition, elongated equiaxed-α grains and regions of transformed-β with grain size in the 1 to 2 μm range were observed. Friction stir processing above the β-transus was microstructurally evident by a stir zone composed of 10 to 40 μm recrystallized β-grains with either a basket weave or colony structure and a continuous network of α at the grain boundary. Path and normal forces were recorded for in situ processing of Ti-6Al-4V in all three initial conditions. Comparatively, above-transus processing reduced the path force at the tool-to-workpiece interface, while processing below the β-transus caused the path force to increase by ~300 pct. Based on the dimensionless heat input, it appears that the stir zone microstructure is more dependent on spindle speed (RPM) than travel speed and that the heat input parameter is not a good indicator of the processing temperature. Hot torsion testing of α/β-processed Ti-6Al-4V was used as a method for physically simulating the stir zone microstructure produced from friction stir processing. At a strain rate of 2.5 s?1 (250 RPM rotation rate), the transition from equiaxed-α to a transformed beta microstructure occurred at approximately 1223 K (950 °C). A comparison of FSP and hot torsion microstructures revealed nearly identical matching depending on the selection of hot torsion conditions.  相似文献   

15.
Ti-6Al-4V-2Ni is being considered as a composite matrix material because of its potential for a lower consolidation temperature and reduced reaction product formation compared with conventional Ti-6A1-4V. Stress/strain-rate measurements of Ti-6Al-4V-2Ni in sheet form provided data for calculation of diffusion bonding parameters required for efficient consolidation. These data were used as consolidation parameters for fabrication of SiC (SCS-6) reinforced Ti-6Al-4V-2Ni. The composite with 10.5 vol pct SiC exhibits room temperature tensile strength approximately 80 pct of that observed for conventional Ti-6Al-4V/SiC having 35 to 40 vol pct SiC. Scanning and transmission electron microscopy revealed that the fiber-matrix reaction zone is roughly one-half the thickness of that found in SiC-reinforced Ti -6A1-4V, and that it consists of TiC and Ti5Si3. Nickel does not enter into the reaction zone products, but rather promotes the formation of Ti2Ni in the matrix.  相似文献   

16.
Two alloys, Ti-6Al-2V and Ti-2Al-16V, simulating the alpha and beta phases of Ti-6A1-4V, respectively, were prepared with oxygen concentrations from 0.07 to 0.65 wt pct (0.20 to 1.83 at. pct). Their microstructure, deformation behavior, and strength were investigated with X-ray diffraction, microscopy, and mechanical tests to determine the effects of oxygen concentration and heat treatment. In both alloys the hardness increases in identical fashion with the square root of oxygen concentration. The alloys' strengths also depend on heat treatment, but in different ways. Whereas the alpha alloy is non-age-hardenable, the beta alloy's strength can be doubled by aging. The hardening effect of oxygen is generally unaffected by heat treatment, except for the alloys with the highest oxygen concentrations. During aging of the alpha a small amount of Ti3Al can form, and slight age-hardening occurs. The ductility of the alpha alloy is little affected by aging. On the other hand, oxygen causes a change from good ductility at low oxygen concentration (0.07 wt pct) to total brittleness at 0.65 wt pct oxygen, independent of heat treatment. In the beta alloy there are complex phase transformations depending on heat treatment. Its deformation behavior varies from very ductile in solutiontreated and quenched (STQ) condition to totally brittle in aged conditions. The aging embrittlement appears to be caused by alpha and some omega precipitation. Decoration of the beta grain boundaries with precipitates accounts for the intergranular brittle fracture. Oxygen, on the other hand, is not an embrittler, although it reduces the ductility of the beta alloy.  相似文献   

17.
Synthesis of nanocrystalline Ti-6Al-4V was explored using mechanochemical processing. The reaction mixture was comprised of CaH2, Mg powder, anhydrous AlCl3, anhydrous VCl3, and TiCl4. The milled powder (reaction product) primarily consisted of nanocrystalline alloy hydride having a composition (Ti-6Al-4V)H1.942, along with MgCl2 and CaCl2 as by-products. Aqueous solutions of nitric acid, sulfuric acid, and 1 pct sodium sulfite were found to be very effective in leaching of the chlorides from the milled powder. The (Ti-6Al-4V)H1.942 on dehydrogenation at 375°C resulted in nanocrystalline Ti-6Al-4V alloy powder.  相似文献   

18.
Additive layer deposition techniques such as electron beam melting (EBM) and laser beam melting (LBM) have been utilized to fabricate rectangular plates of Ti-6Al-4V with extra low interstitial (ELI) contents. The layer-by-layer deposition techniques resulted in plates that have different surface finishes which can impact significantly on the fatigue life by providing potential sites for fatigue cracks to initiate. The fatigue life of Ti-6Al-4V ELI alloys fabricated by EBM and LBM deposition techniques was investigated by three-point testing of rectangular beams of as-fabricated and electro-discharge machined surfaces under stress-controlled conditions at 10 Hz until complete fracture. Fatigue life tests were also performed on rolled plates of Ti-6Al-4V ELI, regular Ti-6Al-4V, and CP Ti as controls. Fatigue surfaces were characterized by scanning electron microscopy to identify the crack initiation site in the various types of specimen surfaces. The fatigue life data were analyzed statistically using both analysis of variance techniques and the Kaplan-Meier survival analysis method with the Gehan-Breslow test. The results indicate that the LBM Ti-6Al-4V ELI material exhibits a longer fatigue life than the EBM counterpart and CP Ti, but a shorter fatigue life compared to rolled Ti-6Al-4V ELI. The difference in the fatigue life behavior may be largely attributed to the presence of rough surface features that act as fatigue crack initiation sites in the EBM material.  相似文献   

19.
The effect of alloy composition on hydrogen activity was measured for seven titanium alloys as a means to determine the tendency for hydrogen migration within dissimilar metal welds. The alloys were: Ti-CP, Ti-3A1-2.5V, Ti-3Al-2.5V-3Zr, Ti-3Al-2Nb-lTa, Ti-6A1, Ti-6A1-4V, and Ti-6Al-2Nb-lTa-0.8Mo. Hydrogen pressure—hydrogen concentration relationships were determined for temperatures from 600 °C to 800 °C and hydrogen concentrations up to approximately 3.5 at. pct (750 wppm). Fusion welds were made between Ti-CP and Ti-CP and between Ti-CP and Ti-6A1-4V to observe directly the hydrogen redistribution in similar and dissimilar metal couples. Hydrogen activity was found to be significantly affected by alloying elements, particularly Al in solid solution. At a constant Al content and temperature, an increase in the volume fraction of β reduced the activity of hydrogen in α-β alloys. Activity was also found to be strongly affected by temperature. The effect of temperature differences on hydrogen activity was much greater than the effects resulting from alloy composition differences at a given temperature. Thus, hydrogen redistribution should be expected within similar metal couples subjected to extreme temperature gradients, such as those peculiar to fusion welding. Significant hydrogen redistribution in dissimilar alloy weldments also can be expected for many of the compositions in this study. Hydride formation stemming from these driving forces was observed in the dissimilar couple fusion welds. In addition, a basis for estimating hydrogen migration in titanium welds, based on hydrogen activity data, is described.  相似文献   

20.
Ti-6Al-4V alloy, to which 0.6 wt pct to 1.0 wt pct (22 to 33 at. pct) hydrogen has been added, can undergo a phase transformation which produces unique, fine microstructures. Specimens of the alloy were heated to 870°C, transformed at temperatures between 540°C and 700°C, and the microstructures were determined as a function of hydrogen content and transformation temperature. Microstructures and tensile properties of sheet specimens were determined after such transformation followed by dehydrogenation at temperatures between 650°C and 760°C. The highest yield strength (1130 MPa) and good ductility (9 pct El) were associated with a fine equiaxed microstructure obtained in material charged with approximately 1.0 wt pct hydrogen, transformed at 565°C and dehydrogenated at 675°C. Lower strengths and ductilities were associated with acicular microstructures produced by transformation at higher temperatures or coarser structures producted at higher dehydrogenation temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号