首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of boron doping and electron correlation on the transport properties of CVD boron-doped multiwalled carbon nanotubes are reported. The boron-doped multiwalled carbon nanotubes were characterized by TEM as well as Raman spectroscopy using different laser excitations (viz. 488, 514.5 and 647 nm). The intensity of the D-band laser excitation line increased after the boron incorporation into the carbon nanotubes. The G-band width increased on increasing the boron concentration, indicating the decrease of graphitization with increasing boron concentration. Electrical conductivity of the undoped and boron-doped carbon nanotubes reveal a 3-dimensional variable-range-hopping conductivity over a wide range of temperature, viz. from room temperature down to 2 K. The electrical conductivity is not found to be changed significantly by the present levels of B-doping. Electron Paramagnetic Resonance (EPR) results for the highest B-doped samples showed similarities with previously reported EPR literature measurements, but the low concentration sample gives a very broad ESR resonance line.  相似文献   

2.
Silica nanotubes were synthesized using multi-walled carbon nanotubes (MWCNTs) as template. The as-obtained samples were characterized by infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscope (FE-SEM) and photoluminescent (PL) spectroscopy. The results indicate that the thickness of the outer walls is about 10 nm and the inner diameter is completely dependent on the size of MWCNTs. The as-fabricated silica nanotubes emit a strong violet light under excitation of 250 nm.  相似文献   

3.
High purity and uniform carbon nanotubes with about 35 nm in diameter were produced by pyrolysis of deoiled asphalt in the presence of ferrocene in an atmosphere of hydrogen and argon at 1000 °C. Characterization of carbon nanotubes was carried out by field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), X-ray energy dispersive spectroscopy (EDS), Raman spectroscopy and X-ray diffraction (XRD). The carbon nanotubes were highly graphitized with amorphous carbons covering the outside wall. The influence of temperature on the preparation of carbon nanotubes was also discussed.  相似文献   

4.
We report the formation of vertical carbon nanotubes utilizing diatomite as a substrate. This new material combines the advantages of carbon nanotubes and diatomite in one material. The SEM investigations showed that the average diameter of the carbon nanotubes was 60 nm and the growth was through the tip growth mechanism. Raman spectroscopy was also used for the carbon nanotubes characterization and showed two intensive peaks around 1350 cm−1 and 1580 cm−1 and several peaks at low frequency range from 100 cm−1 to 500 cm−1 which are assigned to the radial breathing mode (RBM) and used as a characteristic of single wall carbon nanotubes. The photoluminescence measurements at the room temperature showed two very narrow intensive overlapping peaks near the ultraviolet range at energy of about 3 eV. And there are two peaks with lower intensity in the infrared region at 830 nm and at 940 nm (or 1.49 eV, 1.3 eV respectively).  相似文献   

5.
Vertically aligned carbon nanotubes (VACNTs) have been synthesized on silicon substrates in a thermal catalytic chemical vapor reactor using natural palm oil as the carbon source. Field Emission Scanning Electron Microscopy (FESEM) and microraman analysis revealed dense bundles of mixed multi-walled and single-walled carbon nanotubes (CNTs). The diameters of the single-walled carbon nanotubes (SWCNTs) were estimated to be between 0.6 nm and 1.2 nm. Thermogravimetric analysis (TGA) results showed that 90% purity was achieved at the expense of 4% weight catalyst material.  相似文献   

6.
Nano-composites of tin and tin dioxide particles were synthesized on carbon nanotubes by the single-atoms-to-clusters (SAC) method, and their structures were investigated by high-resolution transmission electron microscopy. By changing the heat-treatment temperature during the SAC process, two different types of samples were obtained. The samples prepared around 450 K were aggregates of 2-4 nm-sized tin dioxide nanoparticles, and their size distributions on carbon nanotubes are in the range 20-40 nm. The other samples formed above 600 K had a core-shell structure of diameter 20-40 nm. The core and shell were made of tin single crystal and disordered oxidized tin, respectively. The thickness of the oxidized layers was ca. 4 nm.  相似文献   

7.
A one-step synthesis route to carbon nanocapsules and nanotubes containing Fe and Fe3C nanoparticles is reported. Low power laser assisted pyrolysis of ferrocene yielded carbon nanocapsules (30-100 nm in diameter) and multi-wall carbon nanotubes (30-80 nm in diameter). The developed route is fast and enables one to synthesize the products at a rate of 84 mg/min. The iron content in the product (10-42 wt.%) can be varied by modulating the buffer gas pressure during the synthesis process.  相似文献   

8.
Copper nanoparticles were synthesized using carbon nanotubes as a template. The process involved neither pre-purification nor an additional reducing agent. This method was simple and the Cu nanoparticles were uniformly loaded on the carbon nanotubes. TEM, SEM, XRD and EDX were used to examine the morphology of the Cu particles. The diameter of the carbon nanotubes is about 70-90 nm and the size of the nanoparticles is about 50-70 nm.  相似文献   

9.
《Materials Letters》2007,61(8-9):1899-1903
Large-scale well-aligned carbon nanotube film and carbon nanotube bundles have been fabricated on smooth silica and rough polycrystalline ceramic substrates by pyrolysis of ferrocene/melamine mixtures. The images of transmission electron microscopy (TEM) and scanning electron microscope (SEM) show that carbon nanotubes grown on the silica substrate have uniform outer diameters of about ∼ 25 nm and lengths of about 40 μm, while those on the ceramic substrate have outer diameters from 10 to 90 nm and lengths up to 100 μm. Electron energy-loss spectroscopy (EELS) spectra show that nanotubes grown on the two different substrates are pure carbon tubes. The effects of substrate micro-morphologies on the diameters of carbon nanotubes have been discussed.  相似文献   

10.
The hydrogen sensing properties of multi-walled carbon nanotubes (MWNTs) synthesized by a hot filament CVD process are reported in this paper. The MWNTs were synthesized by a hot filament assisted chemical vapor deposition method using cobalt oxide nanoparticles as the catalyst on SiO2 surfaces. The MWNTs were characterized with Raman spectroscopy and scanning electron microscopy. Two-terminal test devices were fabricated by depositing a layer of MWNTs between prefabricated gold electrodes on SiO2 surfaces. The diameter of these MWNTs was in the 5–8 nm range. The sensitivity of carbon nanotubes was measured for different gas concentrations at different temperatures. It was found that the MWNTs were sensitive to H2 in low temperature regions of 140–350 °C and had a maximum sensitivity (80%) at 230 °C. No sensitivity was observed at a temperature lower than 140 °C or higher than 400 °C. Though bare MWNTs are not sensitive to H2 at room temperature, they exhibited very good sensing characteristics in the 140–300 °C range.  相似文献   

11.
Multiwalled carbon nanotubes (MWNTs) were synthesized using a hot filament assisted chemical vapor deposition (CVD) at the atmospheric pressure at a substrate temperature of 550 °C. The size of nanotubes was controlled by changing the size of catalyst particles. The structure and composition of these nanotubes were investigated using scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. The electron field emission current of MWNTs was also measured. It was found that the nanotubes with smaller the diameter had higher the emission current levels though synthesis conditions except catalyst particles were the same. These as-grown MWNTs had emission current densities of 6.5 mA/cm2 and 2.5 mA/cm2 at 1 V/μm for 5-8 nm and 20 nm size carbon nanotube samples, respectively. The results indicated that the MWNTs synthesized had low emission threshold voltages and high emission current levels that are favorable properties for field emission-based display device applications.  相似文献   

12.
Carbon nanotubes were electrodeposited in acetonitrile solution at room temperature using Cu, and Fe-Ni nanoparticles as nucleation sites on HF-etched Si(100) wafer substrate. The electrochemical behavior of the deposition was investigated by voltammetry and chronoamperometry techniques. In order to obtain the optimum growth condition, the deposition critical parameters including current density range, potential and time were studied and calculated. Carbon nanotubes with approximate external diameter of 40-100 nm were fabricated under potentiostatic condition and diffusion control at − 20 V in 4-6 h. The film crystallinity was investigated by means of X-ray diffraction and the tubes structure was revealed using scanning electron microscope and transmission electron microscope images. Raman spectroscopy was also employed to characterize the nanostructural features and single wall carbon nanotubes were detected.  相似文献   

13.
Y2O3:RE3+(RE=Eu, Tb, Dy) porous nanotubes were first synthesized using carbon nanotubes as template. The morphology of the coated precursors and porous Y2O3:Eu3+ nanotubes was determined by scanning electron Microscopy (SEM) and transmission electron microscopy (TEM). It was found that the coating of precursors on carbon nanotubes (CNTs) is continuous and the thickness is about 15 nm, after calcinated, the Y2O3:Eu3+ nanotubes are porous with the diameter size in the range of 50-80 nm and the length in micrometer scale. X-ray diffraction (XRD) patterns confirmed that the samples are cubic phase Y2O3 and the photoluminescence studies showed that the porous rare earth ions doped nanotubes possess characteristic emission of Eu3+, Tb3+, and Dy3+. This method may also provide a novel approach to produce other inorganic porous nanotubes used in catalyst and sensors.  相似文献   

14.
We demonstrate synthesis, electrical and magnetic characterization of silicon carbo-nitride (SiCN) coated multiwalled carbon nanotubes in a core-shell structure. The core formed by a carbon nanotube had a diameter in the range of 10-100 nm. The shell was synthesized by pyrolysis of an SiCN precursor on the surface of carbon nanotubes. Electrical resistivity of an individual composite nanotube was measured to be ~ 2.55 × 103 Ω cm. The magnetic measurements performed by a superconducting quantum interference device on the composite nanotubes in the temperature range of 5-300 K show a reduced coercive field with increasing temperatures. The monolayer thick coating of an ultra high temperature multifunctional ceramic SiCN makes these composite nanotubes very promising for sensing applications in harsh environments.  相似文献   

15.
Transparent conductive material is used in a wide range of applications and is particularly interesting. In the present work, a series of multiwall carbon nanotubes/low density polyethylene nanocomposites with different carbon nanotubes were prepared via solution casting method. The optical transparency, morphology, and resistivity of transparent conductive films have been characterized by using UV–Vis Spectrophotometer, Field emission scanning electron microscope and Multimeter, respectively. Their electrically conductive and optically transparent properties were studied and compared. The result showed that thinner and longer multiwall carbon nanotubes were more suitable for the fabrication of flexible transparent conductive nanocomposites. The sample filled with 1 wt% of T.1 (outside diameter <8 nm, length 10–30 μm) had good transparent conductive properties (volume conductivity of 3.12 × 10?3 S m?1 and optical transmittance of 62.8 % at the light wavelength of 600 nm). The high volume conductivity and optical transparency demonstrated that such kind of nanocomposite films had favorable potential in the applications from electromagnetic interference shielding to transparent electrodes.  相似文献   

16.
以碳纳米管为模板,采取前驱物分解法合成了碳纳米管/氧化镁纳米复合材料,用XRD、IR、SEM和TG-DTG对产物进行了表征.结果表明,产物是由氧化镁均匀包裹在碳纳米管上构成的一种复合材料,管径约100nm.和碳纳米管相比,复合材料管径变粗且表面粗糙.  相似文献   

17.
Single-walled carbon nanotubes (SWNTs) have been synthesized by catalytic decomposition of eucalyptus oil, on a high silica-zeolite support impregnated with Fe/Co catalyst at 850 °C by the spray pyrolysis method. Catalyst with 5 wt.% (molar ratio of Co:Fe = 1:1), impregnated in zeolite was suitable for effective formation of carbon nanotubes (CNTs). As-grown CNTs were characterized by SEM, TEM and Raman spectroscopy. Raman spectroscopy reveals that as-grown CNTs are well graphitized. Raman spectroscopy also reveals that the as-prepared SWNTs have a diameter of about 0.79-1.71 nm.  相似文献   

18.
Three types of carbon nanomaterials, including bamboo-shaped carbon nanotubes with Ni encapsulated and hollow and Ni catalytic particles filled carbon nanocages, have been prepared by methane catalytic decomposition at a relatively low temperature. Transmission electron microscopy observations showed that fascinating fullerene-like Ni–C (graphitic) core–shell nanostructures predominated. Detailed examination of high-resolution transmission electron microscopy showed that the walls of bamboo-shaped carbon nanotubes with quasi-cone catalytic particles encapsulated consisted of oblique graphene planes with respect to the tube axis. The Ni particles encapsulated in the carbon nanocages were larger than that encapsulated in carbon nanotubes, but the diameters of the cores of hollow carbon nanocages were less than that of Ni particles encapsulated in carbon nanotubes, suggesting that the sizes of catalyst particles played an important role during carbon nanomaterial growth. The magnetic properties of the carbon nanomaterials were measured, which showed relatively large coercive force (Hc = 138.4 Oe) and good ferromagnetism (Mr/Ms = 0.325).  相似文献   

19.
Carbon dioxide was successfully used as carbon source in the synthesis of carbon nanotubes (CNTs) by chemical vapor deposition (CVD) over Fe/CaO catalyst. The product was evaluated using both transmission electron microscopy (TEM) and Raman spectroscopy. Crooked and branching structures of multi-walled carbon nanotubes (MCNTs) with diameters of around 50 nm were observed on the TEM micrographs. Raman spectrum results show that the nanotubes have small defects, which is in agreement with the results of TEM. The influence of reaction variable such as furnace temperature and types of support media was also studied and the reaction mechanism was then discussed in this paper.  相似文献   

20.
The mechanical behaviour of non-chiral and chiral single-walled carbon nanotubes under tensile and bending loading conditions is investigated. For this purpose, three-dimensional finite element modelling is used in order to evaluate the tensile and bending rigidities and, subsequently, the Young's moduli. It is shown that the evolution of rigidity, tensile and bending, as a function of diameter can be described by a unique function for non-chiral and chiral single-walled nanotubes, i.e. regardless of the index or angles of chirality. A comprehensive study of the influence of the nanotube wall thickness and diameter on the Young's modulus values is also carried out. It is established that the evolution of the Young's modulus as a function of the inverse of the wall thickness follows a quasi-linear trend for nanotubes with diameters larger than 1.085 nm. The current numerical simulation results are compared with data reported in the literature. This work provides a benchmark in relation to ascertaining the mechanical properties of chiral and non-chiral single-walled carbon nanotubes by nanoscale continuum models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号