首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The mobile network operators seek ways to increase their capacity and coverage in order to be able to deliver high quality services even under surging mobile broadband demand. The deployment of femtocells is the most efficient, economical and technically feasible approach to achieve this goal. However, a two-layered femtocell/macrocell heterogeneous networks where users can handover from a femtocell to the overlaid macrocell requires innovative traffic management techniques. While call handover from a femtocell to a macrocell can be easily implemented based on already known procedures, on the other hand, the handover towards a femtocell is more challenging. More specifically, due to the limited bandwidth available at each femtocell, it is not spectrally efficient to use a typical guard channel scheme in order to prioritize handover calls over new calls. Therefore, in this paper we introduce a dynamic pre-reservation scheme, which is based on the predictive channel reservation concept and adjusts dynamically the reserved resources. We show both analytically and by simulation that the proposed scheme can be efficiently applied to a two-layered femtocell/macrocell heterogeneous mobile network.  相似文献   

2.
In recent years, femtocells are receiving considerable attention in mobile communication as a cost-effective means of improving indoor coverage and capacity. A significant technical challenge in the deployment of a large number of femtocells is the management of interference from the underlay of femtocells onto the overlay of macrocell. In this paper, a reasonable and effective interference suppression scheme based on the adaptive adjustment of femtocell users’ maximum transmission power is proposed. The highlight of the scheme is the joint design of macrocell users’ uplink communication protection and femtocell users’ optimal power allocation. The scheme restricts the cross-tier interference at macrocell base station below a given threshold and ensures the optimization of femtocell users’ power allocation at each adjustment phase. Last, admission control is also considered, aiming to exploit the network resources more effectively. Simulation results show the superiority of the proposed scheme over the scheme based on the Signal-to-Interference-Plus-Noise Ratio adaptation. We also give some reference on utility function selection by setting different coefficients in the utility function, and show the effectiveness of admission control in both fixed and random network topologies.  相似文献   

3.
Reducing the power consumption of base stations in mobile networks is an important issue. We investigate the power saving evaluation in two-tier heterogeneous mobile networks which consist of femtocells overlaid by macrocells. In the heterogeneous mobile networks, base stations without traffic load are allowed to enter the sleep mode to save power. The power saving probability that a base station enters the sleep mode and the average total power consumption of this network are complex joint-effects of various factors. Successful modelling of these complex joint-effects is critical to mobile network operators when they pursue the design of green mobile networks. In this paper we propose an analytical framework to facilitate systematic analysis. Based on the proposed analytical framework, we investigate the power saving probabilities and the average total power consumption in terms of several parameters, including the new traffic arrival rate per user, the maximum transmission power of a femtocell, the number of femtocells within a macrocell, and the number of users in the network. Numerical results show that the proposed analytical framework provides a useful and efficient method to facilitate systematic analysis and design of green mobile networks. Simulation results validate the accuracy of the proposed analytical framework.  相似文献   

4.
This paper considers the co-channel interference mitigation problem and proposes a preset threshold based cross-tier handover algorithm for uplink co-channel interference mitigation in two-tier femtocell networks. The proposed cross-tier handover algorithm introduces a preset threshold cross-tier handover policy, which takes into account both the time-to-stay (TTS) of a macrocell user equipment (MUE)/femtocell user equipment (FUE) in a femtocell/the macrocell, and the received signal to interference plus noise ratio (SINR) at a femtocell access point (FAP)/the macrocell base station (MBS) in making a cross-tier handover decision for an MUE/FUE. A cross-tier handover decision is made by comparing the TTS of an MUE/FUE in a femtocells/the macrocell and the SINR at a FAP/the MBS with a preset TTS threshold and different SINR thresholds. The objective of the preset threshold based cross-tier handover algorithm is to increase the received SINR at the MBS/FAPs and thus improve the network performance. The performance of the proposed cross-tier handover algorithm with the minimum power transmission and the optimal power transmission is analyzed, respectively. Numerical results show that the proposed preset threshold based cross-tier handover algorithm can significantly improve the network performance in terms of the outage probability, user sum rate, and network capacity.  相似文献   

5.
王学婷  朱琦 《信号处理》2017,33(2):168-177
分层异构网络中家庭基站与宏基站之间往往存在干扰,如何分配资源以获得高谱率和高容量、保证用户性能一直是研究的重点。为了解决这个问题,本文提出了一种异构蜂窝网络中基于斯坦克尔伯格博弈的家庭基站与宏基站联合资源分配算法,算法首先基于图论的分簇算法对家庭基站和宏用户进行分簇和信道分配,以减少家庭基站之间的同层干扰和家庭基站层与宏蜂窝网络的跨层干扰;然后建立了联合家庭基站发射功率以及宏用户接入选择的斯坦克尔伯格博弈,推导出达到纳什均衡时的家庭基站发射功率的表达式,并据此为宏用户选择合适的接入策略。仿真结果表明,该算法能够有效地提高宏用户的信干噪比(SINR),家庭用户的性能也得到改善。   相似文献   

6.
The concept of extending traditional macrocell cellular structure with small cells (like femtocells) in next-generation mobile networks (e. g., Long Term Evolution Advanced) provides a great opportunity to improve coverage and enhance data rate. Femtocells are cost efficient, indoor base stations. These femtocells can operate in closed mode i. e. only restricted users connection are allowed. Therefore, if the number of deployed femtocells is significant, that can dramatically modify the interference pattern of a macrocell. Thus mobile service providers have to pay attention for the number of simultaneously operating femtocells and encroach, if necessary, to provide appropriate service level to every mobile user. In this paper we provide an analytic framework to characterize the upper bound of service outage probability for a potential macrocell user in a two-tier mobile system, when the radio channels are infected by Nakagami- \(m\) fading. In our proposal the femtocells are operating in closed mode and deployed into a designated macrocell, hence every femtocell increases the interference level. The spatial location femtocells is modelled with Poisson cluster process. Compared to traditional grid structure or completely spatial random Poisson point process femtocell deployment, cluster based layout may provides more life realistic deployment scenario. To evaluate the upper bound of service outage we use the tools of stochastic geometry.  相似文献   

7.
赵季红  王勋  栾智荣 《电信科学》2013,29(10):43-48
为了提高局部室内无线通信质量,家庭基站正逐步应用于各类室内无线通信场景。在密集部署femtocell场景中,当用户设备由宏小区层切换至femto层时,密集的femtocell信号会影响用户设备切换的准确性,增加用户设备切换开销和不必要切换概率。针对上述问题,在密集部署femtocell环境下针对切换提出一个femtocell分集理念,在提高切换准确性的同时,降低不必要切换次数,并在此基础上提出了一种缓存切换策略,以提高设备由宏小区层切换至femto层的效率,通过仿真对所提机制的性能进行了验证。  相似文献   

8.
The coexistence of a macrocell and a number of femtocells often leads to a two‐tier heterogeneous network, where the co‐tier interference (CotIN) and cross‐tier interference (CrotIN) both degrade users' quality of service. In order to suppress these interferences, we propose a precoding scheme in a heterogeneous network with cooperative femtocells, called CotIN elimination and CrotIN suppression with precoding criterion selection (ESPS) scheme. In this scheme, we first eliminate the CotINs of each user by applying the QR decomposition to channel matrix. Then the CrotINs of macrocell users and femtocell users are suppressed via the macrocell base station (MBS) and femtocell access points (FAPs) with precoding criterion selection, respectively. By using the ESPS scheme, spatial resources can be efficiently exploited. In addition, our ESPS scheme requires little information exchange between MBS and FAPs without iteration and thus significantly reduces the implementation complexity. Furthermore, the robustness is increased through introducing the information of channel uncertainty into the ESPS when channel estimation or quantization error exists. The performance analysis for the ESPS demonstrates that the ESPS is practical in the heterogeneous networks. Finally, simulation results show that the ESPS can decrease users' bit error rates and increase their transmission rates. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
This paper analyzes two‐tier orthogonal frequency‐division multiplexing (OFDM)‐based cellular structure, when the traditional macrocell structure is extended with femtocells. The benefit of using femtocells is the capacity and coverage extension capability. To fulfill strict quality of service requirements in next‐generation mobile networks such as Long Term Evolution (LTE) or LTE‐Advanced, capacity and coverage enhancing becomes rather important. On the other hand, adding small cells such as femtocells next to macrocell modifies the interference pattern of the current region. Therefore, the number of small cells in a given area should be limited. In this paper, we provide an analytic framework to calculate the outage probability for a macrocell user in OFDM‐based femtocell networks when the deployed femto base stations are composing an independent Poisson cluster process such as Thomas cluster process. Cluster‐based femtocell modeling offers accurate network planning for mobile operators. In this cluster‐based realization, we give an interference characterization and consider the outage probability for a randomly deployed user when communication channel is infected with Rayleigh fading. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
周雄  冯穗力 《信号处理》2014,30(11):1257-1262
针对异频组网的双层分级蜂窝网,提出了一种基于纳什谈判解法的最优频谱分配与定价策略,该策略能激励家庭基站采用开放用户组模式,最大化频谱效益。通过Stackelberg博弈建模,分析了频谱定价与用户需求的关系。通过纳什谈判解法,获得了最佳的频谱分配与定价策略,按需地为宏基站与家庭基站分配了带宽资源,定量地分析了家庭基站所提高的频谱效益。仿真结果表明,该策略相比非合作博弈方法,可有效提高运营商以及家庭基站拥有者所能获得的频谱效益,部署家庭基站将提高蜂窝网络的总效益。   相似文献   

11.
The next generation heterogeneous networks are expected to offer higher data-rate and better QoS to the customers by leveraging smaller cells like femtocells and making use of orthogonal frequency division multiple access. However, uncoordinated dense deployment of femtocells in macrocell network pose unique challenges involving cross-tier interference and resource management which results in significant degradation of the system performance. As part of addressing these challenges for the successful integration of both technologies, this paper proposes the deployment of a self-organizing femtocell network that employs an opportunistic smart frequency reuse technique –cross polarized complementary frequency allocation (CPCFA). It exploits the frequency and polarization diversity to mitigate interference in two-tier femto-macro networks. In this work, a strategy combining the adoption of reverse frequency allocation and orthogonal polarized transmission is analyzed as a potential solution for maximizing spectral efficiency and minimizing interference in the existing heterogeneous networks. Focus of the current work is on downlink transmission where the traffic is high and the deployment of femtocell is more beneficial. The results of analytic and simulation studies prove that CPCFA increases the scope for an easily implementable, remarkable opportunity in the context of two-tier femto-macro network that can substantially increase the system capacity as well as cell coverage without additional network complexities.  相似文献   

12.
Femtocells extend the cellular network coverage and provide high speed data service inside homes and enterprises for mobiles supporting existing cellular radio communication techniques. They also provide additional system capacity by offloading macro network traffic. This article reviews the characteristics of cdma2000-based femtocell systems. It discusses design and deployment aspects such as carrier allocation, access control, efficient support for femtocell discovery by idle mobiles, and active call hand-in from macrocell to femtocell. The evolution of the cdma2000 standard for optimizing performance and enriching user experience with femtocells is also discussed.  相似文献   

13.
A deployment of femtocells that is harmonic with its environment is a challenging issue. In this respect, interference management has traditionally been in the spotlight. However, architectural improvements for efficient femtocell deployments, despite being equally relevant, have received less attention. This paper presents a system architecture conceived for efficiently deploying femtocells in the form of Networks of Femtocells (NoFs). In this scenario, a group of femtocells in the same administrative domain cooperate towards a global performance improvement. Key to this improvement is the introduction of a new entity called Local Femto Gateway (LFGW) and the modifications in the femtocells in the local network. This allows offloading a high volume of control and data traffic from the core network of the mobile operator to the functional entities in the NoF. In particular, this paper focuses on building blocks related to traffic and mobility management. A two-level routing approach is discussed. The highest level is carried out by the mobile network layer. It is in charge of (1) determining the communication endpoints in the form of GPRS Tunneling Protocol (GTP) tunnel endpoint IDs, and (2) forwarding packets between tunnels belonging to the same Evolved Packet System (EPS) bearer at the appropriate nodes. Solutions for efficient handoff, local breakout, and local location management are presented for this level of routing. On the other hand, the lowest-level routing is carried out by the transport network layer. This level is in charge of finding the path between the above endpoints by efficiently using the local transport network that interconnects the femtocells in the NoF. A distributed routing solution for a large-scale, all-wireless network of femtocells is also presented. Overall, these architectural improvements render NoFs a promising approach for efficient traffic management in large-scale femtocell deployments, hence making them a scalable solution.  相似文献   

14.
Two‐tier heterogeneous networks, where the current cellular networks, that is, macrocells, are overlapped with a large number of randomly distributed femtocells, can potentially bring significant benefits to spectral utilization and system capacity. In a two‐tier network, the cross‐tier interference needs to be handled properly. Unlike the downlink interference, the uplink (UL) interference at femtocell caused by macrocell user equipment (MUE) has not been addressed sufficiently. When an MUE is located near the coverage of femtocell, its transmit power may cause UL interference to the femtocell receiver, especially for the closed subscriber group femtocells that share the entire frequency spectrum with macrocell. We propose a novel quasi‐access strategy, which allows the interfering MUE to connect with the interfered femtocell access point (FAP) while only via UL. It can significantly alleviate the UL interference at the FAP as well as its neighbors, in the meantime, benefit the macro‐tier. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

15.
OFDMA femtocells have been pointed out by the industry as a good solution not only to overcome the indoor coverage problem but also to deal with the growth of traffic within macrocells. However, the deployment of a new femtocell layer may have an undesired impact on the performance of the macrocell layer. The allocation of spectrum resources and the avoidance of electromagnetic interference are some of the more urgent challenges that operators face before femtocells become widely deployed. In this article a coverage and interference analysis based on a realistic OFDMA macro/femtocell scenario is provided, as well as some guidelines on how the spectrum allocation and interference mitigation problems can be approached in these networks. Special attention is paid to the use of self-configuration and self-optimization techniques for the avoidance of interference.  相似文献   

16.
In this work, the multiservice uplink capacity of single and multiple femtocells is given. The COST231 multiwall and multifloor indoor propagation model has been used to calculate the indoor propagation loss. Results show that the uplink capacity of a deployed femtocell will reduce by 2 % if two extra femtocells are deployed in the same building higher and lower of it. Results also show that the uplink capacity is slightly affected if there are several femtocells deployed in the buildings around the one at which the femtocell under study is already exists. It is demonstrated that uplink capacity is interference limited if the femtocell is deployed to serve the users in three floors. Results show that the uplink capacity will be interference and noise limited if the femtocell is deployed to serve the users in five floors. Finally, it is found that the effect of the interference due to the uniformly distributed users within the macrocell around the femtocell is insignificant.  相似文献   

17.
In this paper, the feasibility of user-deployed femtocells in the same frequency band as an existing macrocell network is investigated. Key requirements for co-channel operation of femtocells such as auto-configuration and public access are discussed. Methods for femtocell power auto-configuration that ensure a constant cell radius in the downlink, and a low pre-definable interference impact on co-channel macrocells in the uplink are proposed. The theoretical performance of randomly deployed femtocells in such a hierarchical cell structure and the resulting impact on existing co-channel macrocells is analysed for a cellular UMTS network using system level simulations.  相似文献   

18.
In a typical macrocell network, the mobile users are synchronized to the macrocell base station (mBS), where users further away to the mBS transmit their signals earlier. In such a network, the signals of the macrocell users arrive at a femtocell base station (fBS) asynchronously, which may yield interference problems such as inter-carrier-interference in orthogonal frequency domain multiple access (OFDMA) systems. In this letter, statistics of the arrival times of macrocell-synchronous femtocell-asynchronous mobile users' signals to an fBS is derived (conditioned on the fBS-mBS distance), and its implications on the femtocell uplink receiver design are briefly discussed.  相似文献   

19.
We study a method that facilitates autonomous base station deployment in a 4G long term evolution cellular network. Small cellular base stations, or femtocells, are co-channel deployed by network users in an underlay macrocellular network. Autonomous deployment allows the network to grow in an organic manner and meanwhile introduces new challenges for interference management. We propose a cost-effective scheme in order to manage the downlink interference from user-deployed femtocells to macrocell users. We name the approach cognitive femtocell in a sense that a cognitive radio function is enabled on femtocell access points, which facilitates autonomous radio resource management. Our analyses show largely improved performance in terms of channel throughput and spectrum reuse efficiency.  相似文献   

20.

A cognitive femtocell is a new small cell based on a smart home base station to solve the spectrum-scarcity problem. Recently, dedicated resource allocation for cognitive femtocell to mitigate co-channel interference is extensively researched. However, the cognitive femtocell may suffer from the lack of frequency resource for its users due to high data traffic load of the macrocell. We propose a novel resource allocation and power control mechanism using spatial frequency reuse and spectrum sensing, which enables femto users in the cognitive femtocell to obtain more feasible resource. We analyze and evaluate the performance gain of the proposed scheme. Although data traffic load of the macrocell increases, the capacity of the cognitive femtocell can be maintained appropriately by the proposed resource allocation and power control scheme and it is shown that the performance is improved compared to that of the conventional scheme.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号