首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The proper construction of high efficiency, low-cost, earth-abundant oxygen evolution reaction (OER) catalyst is essential for hydrogen formation by water splitting. A novel electrocatalyst with highly active OER performance was manufactured by a simple electroless deposition method of Ni-Fe-P-WO3 on nickel foam (NF). Benefiting from outstanding mass transfer capability of Ni-Fe-P-WO3/NF heterogeneous structure, abundance of active sites in the amorphous architecture and etc., the Ni-Fe-P-WO3/NF shows extremely superb electrocatalytic properties compare to noble metal catalyst IrO2/NF for OER, which needs an overpotential of only 218 mV in 1.0 M KOH solution to achieve the current density of 10 mA cm?2. It also has remarkable OER activity at high current density that only needs 298 mV to attain 100 mA cm?2 current density. Moreover, the Ni-Fe-P-WO3/NF has low Tafel slope of 42 mV dec?1. This study offers a novel approach to the production of OER multiphase electrocatalysts from oxides and alloys.  相似文献   

2.
Electrocatalytic water splitting is an emerging technology for the development of maintainable hydrogen energy. It remains challenging to manufacture a stable, efficient, and cost-effective electrocatalyst that can conquer the slow reaction kinetics of water electrolysis. Herein, A metal-organic framework (MOF) based material is manufactured and productively catalyze the oxygen evolution reaction (OER). The introduction of elemental nickel enhances the catalytic activity of Co-FcDA. The results show that single Ni was well doped in the CoNi-FcDA catalysts and the doping of Ni has a great influence on the OER activity of CoNi-FcDA catalysts. CoNi-FcDA displayed a low overpotential of 241 mV to arrive at the benchmark current density (10 mA cm?2) with a remarkably small Tafel slope of 78.63 mV dec?1. It surpassed the state-of-the-art electrocatalyst for OER, that is, RuO2 (260 mV and 97.26 mV dec?1) in efficiency as well as instability. Density functional theory (DFT) calculations show that suitable Ni doping at the same time can increase the density of states of the Fermi level, resulting in excellent charge density and low intermediate adsorption energy. These discoveries provide a practical route for designing 2D polymetallic nanosheets to optimize catalytic OER performance.  相似文献   

3.
The development of active non-noble electrocatalysts for oxygen evolution reaction (OER) is urgently desired to accomplish high-performance electrocatalytic water splitting. Here, we report a unique structure electrocatalyst composed of FeNi and Mo2C heterojunction as spherical shell supported on carbon sphere as core for efficient OER. With the aid of Mo2C incorporation, FeNi–Mo2C@C shows increased specific surface area, more electrocatalytic active sites, improved surface water adsorption, and reduced energy barrier. Benefiting from the synergy of shell-core and heterojunction sturcture, the optimized FeNi–Mo2C@C exhibits superior activity for OER with an overpotential of 283 mV at 10 mA cm−2 as well as Tafel slope of 29.2 mV dec−1, which is comparable to that of the benchmark ruthenium oxide. The feasible bond between structural design and electronic alteration enhances the charge transfer efficiency, conductivity, and catalytic kinetics, thus intrinsically boost the electrocatalytic performance. This study hence supports a viable strategy to develop highly-efficient non-precious OER electrocatalysts through structural and electronic modification.  相似文献   

4.
Synthesizing efficient and affordable electrocatalysts for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) remains a crucial problem on the way to practical applications for producing clean H2 fuel. Herein, high-efficiency and stable transition metal based electrocatalysts Ni0.85Se-1, Ni0.85Se-2 and Ni0.85Se-3 materials with different morphological characteristics were derived via a one-step hydrothermal route using the Ni(OH)2 and metal-organic framework (Ni-BDC and Ni-BTC) as precursors, respectively. The results showed that Ni0.85Se-2 exhibited excellent electrocatalytic activity. Subsequently, introducing carbon nanomaterials (RGO and CNTs) to form Ni0.85Se/RGO/CNTs nanocomposite material further improves the catalytic activity owing to high conductivity. The resulting Ni0.85Se/RGO/CNTs nanocomposites electrocatalyst showed a low overpotential of 232 mV and 165 mV and a low Tafel slope of 64 mV dec?1 and 98 mV dec?1 when the current density was 10 mA cm?2 for OER and HER, respectively. In addition, the Ni0.85Se/RGO/CNTs nanocomposites were used as an anode and cathode of the water electrolysis device and the overall water splitting performance was investigated. The results show just a voltage of 1.59 V was required when the current density was 10 mA cm?2 and good overall water splitting stability for 20 h. The outstanding electrocatalytic performance of Ni0.85Se/RGO/CNTs is mostly due to its noticeable porous structure, the high conductivity and the large surface area that came from RGO and CNTs.  相似文献   

5.
Developing only Fe derived bifunctional overall water splitting electrocatalyst both for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) while performing at low onset overpotential and with high catalytic stability is a rare instance. We present here the first demonstration of unique iron-oxide nanobeads (FeOx-NBs) based electrocatalyst executing both OER and HER with high activity. Thin-film electrocatalytic FeOx-NBs assembly is surface grown via simple spray coating (SC). The unique SC/FeOx-NBs propels OER initiating water oxidation just at 1.49 VRHE (η = 260 mV) that is the lowest observable onset potential for OER on simple Fe-oxide based catalytic films reported so far. Catalyst also reveals decently high HER activity and competent overall water splitting performance in the FeOx-NBs two-electrode system as well. Catalyst also presents stable kinetics, with promising high electrochemically active surface area (ECSA) of 1765 cm2, notable Tafel slopes of just 54 mV dec1? (OER) and 85 mV dec1? (HER), high exchange current density of 1.10 mA cm2? (OER), 0.58 mA cm2? (HER) and TOF of 74.29s1?@1.58VRHE, 262s1?@1.62VRHE (OER) and 82.5s1?@-0.45VRHE, 681s1?@-0.56VRHE (HER).  相似文献   

6.
Cost-effective oxygen evolution reaction (OER) electrocatalysts play a key role in electrocatalytic water splitting process. Here, a facile and scalable strategy was applied to synthesize the bimetallic metal-organic frameworks (MOFs) with high OER activity, and the effects of AC magnetic field on OER was also investigated. Results shows that the bimetallic MOFs (Co0.4Ni0.6-MOF-74) exhibited a three-dimensional flower-like morphology, and possessed a higher BET specific area of 905.39 m2 g?1 as well as a smaller median pore size of 0.49 nm as compared to single metal MOFs; It owned a lowest overpotential of 314 mV at 10 mA cm?2 and Tafel slope of 79.39 mV dec?1, both are much lower than these of single metal MOFs, being due to the high specific area and more active sites derived from the distorted crystal structure; When AC magnetic field strength equaled to 5.50 mT, overpotential at 10 mA cm?2 for Co0.4Ni0.6-MOF-74 reached minimum value of 201 mV, reduced by about 36% as compared to that without magnetic field, indicated that AC magnetic field could greatly improve OER process. These improvements resulted from the spin polarization effect, magnetohydrodynamic (MHD) convection and improved active point temperature.  相似文献   

7.
The rational design of catalysts with low cost, high efficient and robust stability toward oxygen evolution reaction (OER) is greatly desired but remains a formidable challenge. In this work, a one-pot, spatially confined strategy was reported to fabricate ultrathin NiFe layered double hydroxide (NiFe-LDH) nanosheets interconnected by ultrafine, strong carbon nanofibers (CNFs) network. The as-fabricated NiFe-LDH/CNFs catalyst exhibits enhanced OER catalytic activity in terms of low overpotential of 230 mV to obtain an OER current density of 10 mA cm?2 and very small Tafel slope of 34 mV dec?1, outperforming pure NiFe-LDH nanosheets assembly, commercial RuO2, and most non-noble metal catalysts ever reported. It also delivers an excellent structural and electrocatalytic stability upon the long-term OER operation at a large current of 30 mA cm?2 for 40 h. Furthermore, the cell assembled by using NiFe-LDH/CNFs and commercial Pt/C as anode (+) and cathode (?) ((+)NiFe-LDH/CNFs||Pt/C(?)) only requires a potential of 1.50 V to deliver the water splitting current of 10 mA cm?2, 130 mV lower than that of (+)RuO2||Pt/C(?) couple, demonstrating great potential for applications in cost-efficient water splitting devices.  相似文献   

8.
The synthesis of cost-effective and high-performance electrocatalysts for water splitting is the main challenge in electrochemical hydrogen production. In this study, we adopted a high throughput method to prepare bi-metallic catalysts for oxygen/hydrogen evolution reactions (OER/HER). A series of Ni–Mo alloy electrocatalysts with tunable compositions were prepared by a simple co-sputtering method. Due to the synergistic effect between Ni and Mo, the intrinsic electrocatalytic activity of the Ni–Mo alloy electrocatalysts is improved, resulting in excellent HER and OER performances. The Ni90Mo10 electrocatalyst shows the best HER performance, with an extremely low overpotential of 58 mV at 10 mA cm?2, while the Ni40Mo60 electrocatalyst shows an overpotential of 258 mV at 10 mA cm?2 in OER. More significantly, the assembled Ni40Mo60//Ni90Mo10 electrolyzer only needs a cell voltage of 1.57 V to reach 10 mA cm?2 for overall water splitting.  相似文献   

9.
Developing efficient oxygen evolution reaction (OER) electrocatalysts with earth-abundant elements is very important for sustainable H2 generation via electrochemical water splitting. Here we design a crystalline-amorphous Ni–Fe–Al hybrid phosphides nanosheet arrays grown on NiFe foam for efficient OER application. Dynamic surface reorganization of phosphides at anodic/cathodic polarizations is probed by in situ Raman spectroscopy. The reconstructed amorphous Ni(Fe)OOH species are determined as the active phases that facilitate the OER process. This unique electrode shows highly catalytic activity toward water oxidation, achieving the current densities of 10 and 100 mA cm?2 at 181 and 214 mV in 1 M KOH, respectively. Meanwhile, it also exhibits excellent stability at a large current density of 100 mA cm?2 for over 60 h. This work reveals the dynamic structural transformation of pre-catalyst in realistic conditions and highlights the important role of oxyhydroxides as real reactive species in OER process with high activity.  相似文献   

10.
The water electrolysis process has attracted great attention due to the production of high energy density pure hydrogen. However, the involved cell reactions in this process such as hydrogen and oxygen evolution reactions are kinetically sluggish and demands high input energy to accelerate the rate of these reactions. Therefore, the development and application of efficient electrocatalyst is essential for hydrogen evolution reaction (HER) as well as oxygen evolution reaction (OER). In the present work, we have successfully synthesized two rare earth phosphates through the hydrothermal route and used as a catalysts towards HER in an acidic medium. The rare earth phosphate PrPO4 exhibits better catalytic activity than YPO4 catalyst. The overpotential of PrPO4, YPO4 and standard Pt/C were found as 147, 484.3 and 58 mV vs. reversible hydrogen electrode, respectively, to reach current density 10 mA·cm?2 and corresponding Tafel slopes were found as 107.58, 118.73 and 80.89 mV decade?1, respectively in 0.5 M H2SO4. The catalytic activity of PrPO4 (472.83 mA·cm?2) overcome standard Pt/C (179.60 mA·cm?2) at high overpotential 450 mV vs. reversible hydrogen electrode. The prepared PrPO4 shows efficient electrocatalytic activity towards HER in acidic medium because it possess high BET surface area, large ECSA value and small charge transfer resistance than YPO4.  相似文献   

11.
Constructing high-efficient and nonprecious electrocatalysts is of primary importance for improving the efficiency of water splitting. Herein, a novel sunflower plate-like NiFe2O4/CoNi–S nanosheet heterostructure was fabricated via facile hydrothermal and electrodeposition methods. The as-fabricated NiFe2O4/CoNi–S heterostructure array exhibits remarkable bifunctional catalytic activity and stability toward oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in alkaline media. It presents a small overpotential of 219 mV and 149 mV for OER and HER, respectively, to produce a current density of 10 mA cm?2. More significantly, when the obtained electrodes are used as both the cathode and anode in an electrolyzer, a voltage of 1.57 V is gained at 10 mA cm?2, with superior stability for 72 h. Such outstanding properties are ascribed to: the 3D porous network structure, which exposes more active sites and accelerates mass transfer and gas bubble emission; the high conductivity of CoNi–S, which provides faster charge transport and thus promotes the electrocatalytic reaction of the composites; and the effective interface engineering between NiFe2O4 (excellent performance for OER) and CoNi–S (high activity for HER), which leads to a shorter transport pathway and thus expedites electron transfer. This work provides a new strategy for designing efficient and inexpensive electrocatalysts for water splitting.  相似文献   

12.
The construction of cost-effective bifunctional electrocatalysts with the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is significant for efficient overall water splitting. Herein, this work demonstrates a novel strategy for the synthesis of nickel-cobalt oxides/sulfides/phosphides composite (denoted as NiCoO–2P/S) nanoarrays on Ni foam. In this method, Ni–Co bimetallic oxide nanowires on Ni foam were partially phosphorized and sulfurized simultaneously in situ to yield Ni–Co oxide/sulfide/phosphide composite. The NiCoO–2P/S arrays have good interfacial effects and display many holes in the nanowires, giving it the advantage of large accessible surfaces on the nanowires and a beneficial for the release of gas bubbles, resulting in an excellent OER performance with a low overpotential (η) of 254 mV at 100 mA cm?2 and good HER activity (η10 = 143 mV at 10 mA cm?2). The electrocatalytic test results demonstrate small Tafel slopes (82 mV dec?1 for HER, 88 mV dec?1 for OER) and the satisfying durability in an alkaline electrolyte, indicating that the HER and OER activity was enhanced by the introduction of the Ni/Co sulfides and phosphides into Ni–Co oxides composite nanowires. Furthermore, the as-prepared NiCoO–2P/S catalyst can be used as both the anode and the cathode simultaneously to realize overall water splitting in the two-electrode electrolyzer. This system can be driven at low cell voltages of 1.50 and 1.68 V to achieve current densities of 10 and 100 mA cm?2, respectively. This work provides an alternative strategy to prepare high-performance bifunctional electrochemical materials and demonstrates the advantages of Ni–Co oxide/sulfide/phosphide composites for water splitting.  相似文献   

13.
Developing robust non-noble catalysts towards hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is vital for large-scale hydrogen production from electrochemical water splitting. Here, we synthesize Sn- and Fe-containing sulfides and oxyhydroxides anchored on nickel foam (SnFeSxOy/NF) using a solvothermal method, in which a heterostructure is generated between the sulfides and oxyhydroxides. The SnFeSxOy/NF exhibits low overpotentials of 85, 167, 249, and 324 mV at 10, 100, 500 and 1000 mA cm?2 for the HER, respectively, and a low overpotential of only 281 mV at 100 mA cm?2 for the OER. When it serves as both anode and cathode to assemble an electrolyzer, the cell voltage is only 1.69 V at 50 mA cm?2. The sulfides should be the efficient active species for the HER, while the oxyhydroxides are highly active for the OER. The unique sulfide/oxyhydroxide heterostructure facilitates charge transfer and lowers reaction barrier, thus promoting electrocatalytic processes.  相似文献   

14.
Development of an inexpensive electrocatalyst for hydrogen evolution (HER) and oxygen evolution reactions (OER) receives much traction recently. Herein, we report a facile one-pot ethyleneglycol (EG) mediated solvothermal synthesis of orthorhombic Co2P with particle size ~20–30 nm as an efficient HER and OER catalysts. Synthesis parameters like various solvents, temperatures, precursors ratios, and reaction time influences the formation of phase pure Co2P. Investigation of Co2P as an electrocatalyst for HER in acidic (0.5 M H2SO4) and alkaline medium (1.0 M KOH), furnishes low overpotential of 178 mV and 190 mV, respectively to achieve a 10 mA cm?2 current density with a long term stability and durability. As an OER catalyst in 1.0 M KOH, Co2P shows an overpotential of 364 mV at 10 mA cm?2 current density. Investigation of Co2P NP by XPS analysis after OER stability test under alkaline medium confirms the formation of amorphous cobalt oxyhydroxide (CoOOH) as an intermediate during OER process.  相似文献   

15.
Electrolysis of water has been one of the most promising approaches for renewable energy resources while the efficient oxygen evolution reaction (OER) remains challenging. Herein, a series of different ratio of Se doped Co3O4 nanoparticles XSe-Co3O4 are prepared by hydrothermal method and applied as OER electrocatalysts. Se2? is doped into the Co3O4 crystal lattice by substituting of O2? and a large number of oxygen vacancies are generated, which provides more available activity sites for OER. Se doping increases the surface ratio of Co2+/Co3+ and accelerates the electron transport that favors OER activity promotion. The optimized doping ratio of 6%Se–Co3O4 presents low overpotential of 281 mV at 10 mA cm?2, as well as a low Tafel slope of 70 mV dec?1 in 1 M KOH solution, which has great advantages compared to the recently reported Co3O4-based OER electrocatalysts. This work provides new ideas for the development of efficient Co3O4-based OER electrocatalysts.  相似文献   

16.
An ongoing challenge still lies in the exploration of proficient electrocatalysts from earth-abundant non-precious metals instead of noble metal-based catalysts for clean hydrogen energy through large-Scale electrochemical water splitting. However, developing a non-precious transition metals based, stable electrocatalyst for cathodic hydrogen evolution reaction (HER) and anodic oxygen evolution reaction (OER) is important challenge for modern energy conversion technology. In this report Vanadium doped bimetallic nickel-iron nanoarray, fabricated by carbon supported architecture through carbonization process for electrochemical water splitting. Three types of catalysts were prepared in different molar ratio of Ni/Fe. The electrocatalytic performance demonstrated that the catalyst with equal mole ratio (0.06:0.06) of Ni/Fe possess high catalytic activity for both OER and HER in alkaline and acidic medium. Besides, our findings revealed that the doping of vanadium could play a strong synergetic effect with Ni/Fe, which provide a small overpotential of 90 mV and 210 mV at 10 mA cm?2 for HER and OER respectively compared to the other two catalyst counterparts. Also, the catalyst with 1:1 (Ni/Fe) molar ratio showed a high current density of 208 mA cm?2 for HER at 0.5 M H2SO4 and 579 mA cm?2 for OER at 1 M KOH solution, the both current densities are much higher than the other two catalysts (different Ni/Fe ratio). In addition, the presented catalysts showed extremely good durability, reflecting in more than 20 h of consistent Chronoamprometry study at fixed overpotential η = 250 mV without any visible voltage elevation. Similarly, the (Ni/Fe) equal ratio catalyst showed better corrosion potential 0.209 V vs Ag/AgCl and lower current density 0.594 × 10?12 A cm?2 in high alkaline medium. The V-doping, MOF/GO surface defects are significantly increased the corrosion potential of the V-NixFey-MOF/GO electrocatalyst. Besides, the water electrolyzed products were analysed by gas chromatography to get clear insights on the formed H2 and O2 products.  相似文献   

17.
To deal with energy and environmental issues, it is necessary to exploit efficient and stable electrocatalysts for the generation of clean hydrogen. Herein, we describe the synthesis of bimetallic Fe/Ni alloy encapsulated by amorphous carbon shells via a facile annealing strategy for electrocatalytic oxygen evolution reaction (OER). The ferric nickel tartrate annealed at 800 °C (Ni3Fe1Ox@C-800) exhibits a low OER overpotential of 264 mV at 10 mA cm?2 and good stability in alkaline media. Compared with monometallic counterpart, bimetallic Ni3Fe-based nanocomposites show lower OER barrier (ca. 324 kJ mol?1) due to a cooperation mechanism between Ni and Fe sites in promoting electrocatalytic water oxidation. Compared with those annealed at other temperatures, the enhanced OER performance of Ni3Fe1Ox@C-800 can be ascribed to the large electrochemical surface area for exposing more active sites, smaller charge transfer, and better intrinsic activity of Ni3Fe-based sites.  相似文献   

18.
Herein, based on the mechanical alloying (MA) and in situ electrochemical etching methods, a series of porous Ni–Fe electrocatalysts with different Ni/Fe atomic ratios derived from intermetallic NiFe aluminides have been designed and applied to OER (oxygen evolution reaction) in alkaline solution. As comparing with bulk NiFe aluminides electrocatalyst, the porous electrocatalyst presents higher activity via the etching method. In addition, among all porous samples with different metal stoichiometric ratios, Ni2/3Fe1/3Al shows the highest OER activity with an overpotential of 299 mV at 10 mA cm?2 and a Tafel slope of 58.9 mV dec?1, which can be attributed to the high intrinsic activity and large electrochemical surface area from the leaching of Al. This work provides a promising route to in situ synthesize highly efficient electrocatalysts for water splitting.  相似文献   

19.
Design and direct construction of oxygen evolution reaction (OER) catalyst-based electrode is an efficient route to improve the water splitting reaction. Herein, we proposed a facile route to synthesize and load the composite of amorphous CoFe oxyhydroxide (CoFeOx(OH)y) and MoS2 on the carbon paper by combining a hydrothermal and an electrodeposition process. CoFeOx(OH)y has a special feature of long-range disorder (amorphous phase) and short-range order (crystal phase), which greatly improves the OER catalytic performance of the hybrids. In virtue of the synergistic effect of CoFeOx(OH)y and MoS2, an improved electronic coupling effect occurs, which increases the oxidation state of Co and Fe, and thus enhances OER activity. As-synthesized CoFeOx(OH)y/MoS2/CP (CFOMS/CP) electrode affords excellent electrocatalytic activity and good electrochemical OER stability: A small Tafel slope of 37.9 mV dec?1 (vs. 62.1 mV dec?1 for CoFeOx(OH)y/CP, 120.2 mV dec?1 for RuO2/CP) and low overpotential 242 mV at 10 mA cm?2 (vs. 263 mV for CoFeOx(OH)y/CP, 317 mV for RuO2/CP), as well as a stable running for 25 h.  相似文献   

20.
Owing to the efficient modulation of the electronic structure of nanomaterials, rare earth elements introduction as promoters into nanomaterials has attracted great attention in oxygen evolution reaction (OER). This work demonstrates the cerium carbonate hydroxide (CeCO3OH) in situ grown on nickel foam (NF) supported NiFe layered double hydroxide (LDH) as a novel promoter in OER process. The hybrid material (Ni0.75Fe0.15Ce0.10/NF) possesses excellent performance for OER where the overpotentials at the current densities of 10 mA cm?2 and 100 mA cm?2 are 228 mV and 270 mV, respectively, along with the Tafel slope of 38.3 mV dec?1. Such performance is comparable in activity to many state-of-the-art electrocatalysts. The enhanced performance in the NiFe LDH can be ascribed to the synergetic interaction between CeCO3OH and NiFe LDH by utilizing the advantages of cerium and carbonate in OER. The novelty of our work is the exploration of CeCO3OH as a promoter to enhance the OER performance, which expands the application of cerium-based compounds in energy storage and conversion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号