首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, the Mg90Y1.5Ce1.5Ni7 sample is successfully prepared by combining the vacuum induction melting and the mechanical milling. The phase composition and microstructure characteristics are studied by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy measurements. The hydrogenated sample is composed of MgH2, Mg2NiH4, CeH2.73 phases, whereas only the MgH2 and Mg2NiH4 phases are decomposed during dehydrogenation. The hydrogen storage properties of Mg90Y1.5Ce1.5Ni7 samples are measured by semi-automatic Sievert type apparatus. It is found that the samples could be fully activated within three cycles of absorption and dehydrogenation, with a reversible hydrogen storage capacity of about 5.6 wt%. Also, the “optimal hydrogenation temperature” is reduced to 200 °C, and the dehydrogenation activation energy is calculated to be 68.2 kJ/mol and 65.8 kJ/mol by using the Arrhenius and Kissinger equations, respectively. This work provides a scientific approach to promote the practical application of Mg-based alloy.  相似文献   

2.
Mg2In0.1Ni solid solution with an Mg2Ni-type structure has been synthesized and its hydrogen storage properties have been investigated. The results showed that the introduction of In into Mg2Ni not only significantly improved the dehydrogenation kinetics but also greatly lowered the thermodynamic stability. The dehydrogenation activation energy (Ea) and enthalpy change (ΔH) decreased from 80 kJ/mol and 64.5 kJ/mol H2 to 28.9 kJ/mol and 38.4 kJ/mol H2, respectively. The obtained results point to a method for improving not only the thermodynamic but also the kinetic properties of hydrogen storage materials.  相似文献   

3.
    
In order to reduce the obstacle influence of coarse Mg2Ni phase on hydrogen absorption kinetics in Mg–Ni alloys, aluminum was doped and Mg77Ni23-xAlx (x = 0, 3, 6, 9) alloys were prepared. The results show that AlNi phase was formed when Al was added, the size of primary Mg2Ni phase decreases with increasing Al content till 6 at.%, while primary Mg2Ni phase was diminished and primary Mg phase was formed when Al content increased to 9 at.%. The initial hydrogenation rates of Mg77Ni23-xAlx alloys were increased, which is resulted from the refined primary Mg2Ni and the catalytic AlNi phase. More importantly, the hydrogenation rates and capacities were significantly improved at 150 °C, especially for the Mg77Ni17Al6 alloy. The apparent activation energy of the Mg77Ni17Al6 alloy for hydrogenation was reduced to 73.68 kJ/mol from 102.27 kJ/mol of the Mg77Ni23 alloy. Its enthalpy changes for hydrogenation at low and high platforms are 72.3 kJ/mol and 53.9 kJ/mol, respectively. The multiple channels and short distance for hydrogen atoms diffusion provided by refined primary Mg2Ni phase, the solid dissolution of Al in Mg2Ni lattice, and catalytic effect of AlNi on hydrogenation, leading to the improvement of the hydrogen storage properties.  相似文献   

4.
A novel embedded Mg-based hydrogen storage nanocomposite was prepared by mechanical milling of hydriding combustion synthesized (HCS) Mg-based hydride and hydrogen permissive/oxygen prohibitive polymer. The Mg-based hydride was mechanically milled with tetrahydrofuran solution of polymethyl methacrylate (PMMA) under argon atmosphere. It is determined by X-ray diffraction (XRD) analysis that the average grain size of all the milled nanocomposites become smaller and the nanocomposites exhibit a good air-stable property. The microstructures of the nanocomposites obtained by Field emission scanning electron microscopy (FESEM) and High-resolution transmission electron microscopy (HRTEM) analyses show that Mg95Ni5 particles embedded by PMMA have a diameter of smaller than 100 nm, approximately. The nanocomposites show the optimal hydriding/dehydriding properties, requiring 60 min to absorb 3.37 wt.% hydrogen at low temperature of 473 K, and desorbing as high as 1.02 wt.% hydrogen within 120 min at the same temperature. The onset dehydriding temperature of the composites is about 373 K, which is 150 K lower than that of HCS products Mg95Ni5.  相似文献   

5.
The effects of annealing at 1123, 1148, 1173 and 1198 K for 16 h on the structure and properties of the LaY2Ni10Mn0.5 hydrogen storage alloy as the active material of the negative electrode in nickel–metal hydride (Ni–MH) batteries were systematically investigated by X-ray diffraction (XRD), scanning electron microscopy linked with an energy dispersive X-ray spectrometer (SEM–EDS), pressure-composition isotherms (PCI) and electrochemical measurements. The quenched and annealed LaY2Ni10Mn0.5 alloys primarily consist of Ce2Ni7- (2H) and Gd2Co7-type (3R) phases. The homogeneity of the composition and plateau characteristics of the annealed alloys are significantly improved, and the lattice strain is effectively reduced. The alloys annealed at 1148 K and 1173 K have distinctly greater hydrogen storage amounts, 1.49 wt% (corresponding to 399 mAh g?1 in equivalent electrochemical units) and 1.48 wt%, respectively, than the quenched alloy (1.25 wt%, corresponding to 335 mAh g?1 in equivalent electrochemical units). The alloys annealed at 1148 K and 1173 K have relatively good activation capabilities. The annealing treatment slightly decreases the discharge potentials of the alloy electrodes but markedly increases their discharge capacity. The maximum discharge capacities of the annealed alloy electrodes (372–391 mAh g?1) are greater than the extreme capacity of the LaNi5-type alloy (370 mAh g?1). The cycling stability of the annealed alloy electrodes was improved.  相似文献   

6.
Spark plasma sintering (SPS) is a newly developed material preparation technology and is very suitable for the multi-component and/or dissimilar materials preparation. In this paper, Mg–V77.8Zr7.4Ti7.4Ni7.4, Mg–V38Zr25Ti15Ni22 and Mg–ZrMn2 composites were synthesized by SPS method and their hydrogen storage properties were evaluated. The results showed that with the addition of the second alloys, the hydrogen desorption temperature of pure Mg decreased apparently, with the reversible hydrogen storage capacity increased from nearly 0 of pure Mg to near 95% of its total absorption at 573 K. The hydrogen ab/desorption kinetics were also greatly improved, with the hydrogen absorption mechanism changed from surface reaction of pure Mg to three-dimension diffusion of the composite. TEM observation indicated that a thin transition zone of nanocrystalline Mg was produced at the sintering interface during SPS, which may be responsible for the improvement of hydrogen storage properties of these Mg-based composites.  相似文献   

7.
The structure and electrochemical properties of titanium-based hydrogen storage alloy prepared by solid phase sintering at 1123 K were investigated. The result of X-ray diffraction (XRD) showed that the sintered alloy mainly consists of Ti2Ni phase coexisting with TiNi, TiNi3 and Ni phases. The alloy had a maximum discharge capacity of 205 mAh/g at a discharge current density of 60 mA/g and showed a discharge capacity of 146 mAh/g at 150 mA/g. The results of linear polarization (LP) and potential-step measurement presented that the exchange current density and hydrogen diffusion efficient of the alloy were 100 mA/g and 4.2 × 10−9 cm2/s, respectively. The electrochemical performance of the alloy could be effectively improved by using solid phase sintering.  相似文献   

8.
Transition metals and rare-earth elements have excellent catalytic effects on improving the de-/hydrogenation properties of Mg-based alloys. In this study, a small amount of La is used to substitute the Ni in Mg98Ni2 alloy, and some Mg98Ni2-xLax (x = 0, 0.33, 0.67, and 1) alloys show the better overall hydrogen storage properties. The effects of La on the solidification and de-/hydrogenation behaviors of the alloys are revealed. The results indicate that different factors dominate the processes of hydrogen absorption and desorption. The Mg98Ni1·67La0.33 alloy absorb 7.04 wt % hydrogen at 300 °C, with the highest isothermal absorption rate, the Mg98Ni1·33La0.67 hydride show the highest isothermal desorption rates and the lowest peak desorption temperature of 327 °C. The La addition can increase the driving force of hydrogenation, thus the hydrogenation rates and capacities of the Mg98Ni1·67La0.33 and Mg98Ni1·33La0.67 alloys are improved. The formation of refined eutectic structures is a key factor that facilitates the desorption processes of the Mg98Ni2-xLax hydrides with x = 0.67 and 1. High-density LaH3 nanophses are in-situ formed from the LaMgx (8.5 < x < 12) phase, which results in the improved de-/hydrogenation properties. The further La addition deteriorates the hydrogen storage properties of Mg98Ni2-xLax alloy.  相似文献   

9.
The feasibility of scaling up the production of a Mg-based hydride as material for solid state hydrogen storage is demonstrated in the present work. Magnesium hydride, added with a Zr–Ni alloy as catalyst, was treated in an attritor-type ball mill, suitable to process a quantity of 0.5–1 kg of material. SEM–EDS examination showed that after milling the catalyst was well distributed among the magnesium hydride crystallites. Thermodynamic and kinetic properties determined by a Sievert's type apparatus showed that the semi-industrial product kept the main properties of the material prepared at the laboratory scale. The maximum amount of stored hydrogen reached values between 5.3 and 5.6 wt% and the hydriding and dehydriding times were of the order of few minutes at about 300 °C.  相似文献   

10.
La0.75Mg0.25Ni3.2Co0.2Al0.1 hydrogen storage alloy, the nickel-metal hydride (MH/Ni) secondary battery negative electrode, was modified by CuSO4 solution (3 wt% in Cu in contrast with alloy weight) and PdCl2 solution varied from 1 wt% to 4 wt% in Pd in contrast with alloy weight with a simplified pollution-free replacement plating method, aiming at improving its comprehensive electrochemical properties. The XRD analysis and SEM images combined with EDS results reveal that Cu and Pd nanoparticles are uniformly plated on the pristine alloy surface. The relative amount of Pd on the Cu-Pd coated alloy surface increases notably as the PdCl2 concentration increases in the plating solution. Electrochemical tests indicate that alloy electrodes modified by Cu-Pd composite coating show perfect activation performance, which achieve the maximum discharge capacity at the first charge-discharge cycle. Moreover, alloy electrodes coated with Cu-Pd perform dramatically enhanced high rate dischargeability (HRD). The enhancement increases firstly and then decreases as the content of Pd increases in the Cu-Pd coating. Meanwhile, the cycle life of modified alloys is also improved significantly. Among all the samples, the Cu-Pd coated alloy with 3 wt% Pd content in the PdCl2 solution reinforces the comprehensive electrochemical properties most sufficiently, with dischargeability of 86.4% under 1500 mA/g and remaining capacity of 82.7% after 100 cycles.  相似文献   

11.
Mg (200 nm) and LaNi5 (25 nm) nanoparticles were produced by the hydrogen plasma-metal reaction (HPMR) method, respectively. Mg–5 wt.% LaNi5 nanocomposite was prepared by mixing these nanoparticles ultrasonically. During the hydrogenation/dehydrogenation cycle, Mg–LaNi5 transformed into Mg–Mg2Ni–LaH3 nanocomposite. Mg particles broke into smaller particles of about 80 nm due to the formation of Mg2Ni. The nanocomposite showed superior hydrogen sorption kinetics. It could absorb 3.5 wt.% H2 in less than 5 min at 473 K, and the storage capacity was as high as 6.7 wt.% at 673 K. The nanocomposite could release 5.8 wt.% H2 in less than 10 min at 623 K and 3.0 wt.% H2 in 16 min at 573 K. The apparent activation energy for hydrogenation was calculated to be 26.3 kJ mol−1. The high sorption kinetics was explained by the nanostructure, catalysis of Mg2Ni and LaH3 nanoparticles, and the size reduction effect of Mg2Ni formation.  相似文献   

12.
Nanostructured MgH2/0.1TiH2 composite was synthesized directly from Mg and Ti metal by ball milling under an initial hydrogen pressure of 30 MPa. The synthesized composite shows interesting hydrogen storage properties. The desorption temperature is more than 100 °C lower compared to commercial MgH2 from TG-DSC measurements. After desorption, the composite sample absorbs hydrogen at 100 °C to a capacity of 4 mass% in 4 h and may even absorb hydrogen at 40 °C. The improved properties are due to the catalyst and nanostructure introduced during high pressure ball milling. From the PCI results at 269, 280, 289 and 301 °C, the enthalpy change and entropy change during the desorption can be determined according to the van’t Hoff equation. The values for the MgH2/0.1TiH2 nano-composite system are 77.4 kJ mol−1 H2 and 137.5 J K−1 mol−1 H2, respectively. These values are in agreement with those obtained for a commercial MgH2 system measured under the same conditions. Nanostructure and catalyst may greatly improve the kinetics, but do not change the thermodynamics of the materials.  相似文献   

13.
In this study, some transition metal sulfides (TiS2, NbS2, MoS2, MnS, CoS2 and CuS) are used as catalyst to enhance the hydrogen storage behaviors of MgH2. The MgH2-sulfide composites with different sulfides addition are prepared by ball-milling. The phase composition and hydrogen storage properties are studied in detail. The results confirm that all these sulfides can significantly increase the hydrogen desorption and absorption kinetics of MgH2. The MgH2–TiS2 has the best hydrogenation and dehydrogenation kinetics, followed by the MgH2–NbS2, MgH2–MnS, MgH2–MoS2, MgH2–CoS2, MgH2–CuS and MgH2. Also, the onset dehydrogenation temperature of the MgH2–TiS2 is about 204 °C, which is lower about 126 °C than that of the MgH2. The dehydrogenation activation energy can be reduced to 50.8 kJ mol?1 when doping TiS2 in MgH2. The beneficial catalytic effects of the sulfides can be ascribed to the in-situ formation of MgS, TiH2, NbH, Mo, Mn, Mg2CoH5 and MgCu2 phases.  相似文献   

14.
In this paper, amorphous NiB nanoparticles were fabricated by chemical reduction method and the effect of NiB nanoparticles on hydrogen desorption properties of MgH2 was investigated. Measurements using temperature-programmed desorption system (TPD) and volumetric pressure–composition isotherm (PCI) revealed that both the desorption temperature and desorption kinetics have been improved by adding 10 wt% amorphous NiB. For example, the MgH2–10 wt%NiB mixture started to release hydrogen at 180 °C, whereas it had to heat up to 300 °C to release hydrogen for the pure MgH2. In addition, a hydrogen desorption capacity of 6.0wt% was reached within 10 min at 300 °C for the MgH2–10 wt%NiB mixture, in contrast, even after 120 min only 2.0 wt% hydrogen was desorbed for pure MgH2 under the same conditions. An activation energy of 59.7 kJ/mol for the MgH2/NiB composite has been obtained from the desorption data, which exhibits an enhanced kinetics possibly due to the additives reduced the barrier and lowered the driving forces for nucleation. Further cyclic kinetics investigation using high-pressure differential scanning calorimetry technique (HP-DSC) indicated that the composite had good cycle stability.  相似文献   

15.
Among the proposed hydrogen storage systems, magnesium alloys have proved to be promising since they are rechargeable with high hydrogen capacities (theoretically up to 7.6 wt.%), reversibility and low costs. Small particle size, which can be achieved by milling, and small amounts of transition-metal compounds as catalysts result in increased hydrogen release/uptake kinetics. In this work, we developed the rate expression for the dehydrogenation of milled 7MgH2/TiH2, 10MgH2/TiH2, and MgH2 samples. The complete rate expressions, together with the values of activation energy and other rate parameters, were determined for the three milled samples by analyzing data obtained from non-isothermal thermogravimetric analysis (TGA). The MgH2 doped with TiH2 by high-energy milling displayed substantially reduced apparent activation energy of 107-118 kJ/mol and significantly faster kinetics, compared with 226 kJ/mol for similarly milled MgH2 without TiH2 doping.  相似文献   

16.
In this experiment, the Mg-based hydrogen storage alloys SmMg11Ni and SmMg11Ni + 5 wt.% MoS2 (named SmMg11Ni-5MoS2) were prepared by mechanical milling. By comparing the structures and hydrogen storage properties of the two alloys, it could be found that the addition of MoS2 has brought on a slight change in hydrogen storage thermodynamics, an obvious decrease in hydrogen absorption capacity, an obvious catalytic action on hydrogen desorption reaction, and a lowered onset desorption temperature from 557 to 545 K. Additionally, the addition of MoS2 could dramatically improve the alloy in its hydrogen absorption and desorption kinetics. To be specific, the hydrogen desorption times of 3 wt.% H2 at 593, 613, 633 and 653 K were measured to be 1488, 683, 390 and 192 s respectively for the SmMg11Ni alloy, which were reduced to 938, 586, 296 and 140 s for the MoS2 catalyzed SmMg11Ni alloy at identical conditions. The activation energies of the alloys with and without MoS2 for hydrogen desorption are 87.89 and 100.31 kJ/mol, respectively. The 12.42 kJ/mol decrease is responsible for the ameliorated hydrogen desorption kinetics by adding catalyst MoS2.  相似文献   

17.
The ternary imide Li2Mg(NH)2 is considered to be one of the most promising on-board hydrogen storage materials due to its high reversible hydrogen capacity of 5.86 wt%, favorable thermodynamic properties and good cycling stability. In this work, Li2Mg(NH)2 was synthesized by dynamically dehydrogenating a mixture of Mg(NH2)2–2LiH up to 280 °C under different gas (Ar and H2) and pressures (0–9.0 bar). The crystal structure of Li2Mg(NH)2 was found to depend on the gas back pressure in the dehydrogenation process. The crystal structure of Li2Mg(NH)2 and the dehydrogenation/rehydrogenation properties of the Mg(NH2)2–2LiH system strongly depend on the gas back pressure in the dehydrogenation process due to the effect of the pressure on the dehydrogenation kinetics. This study provides a new approach for improving the hydrogen storage properties of the amide–hydride systems.  相似文献   

18.
The hydrogenation/dehydrogenation characteristics and hydrogen storage properties of nominal Mg3Ag and Mg3Y alloys prepared by induction melting were investigated. The as-melted Mg3Ag alloy was composed of Mg54Ag17 phase, while Mg3Y consisted of Mg24Y5 and Mg2Y phases. Mg54Ag17 transformed into MgAg and MgH2 during the first hydrogenation, and the phase transition of the following hy/dehydrogenation cycles was Mg3Ag + 2H2 ↔ MgAg + 2MgH2. Both Mg24Y5 and Mg2Y undertook disproportion reactions and decomposed into MgH2 and YH3. Experimental and calculated results demonstrated that there was no necessary relation between the thermodynamic stabilities and the size interstices in these alloys. The dehydrogenation enthalpy change (ΔH) and entropy change (ΔS) of Mg3Ag were calculated and compared with that of pure Mg, which indicated that the increase of ΔS could counteract the stabilization effect of ΔH, which offered a method for tuning the thermodynamic properties of Mg-based alloys.  相似文献   

19.
In this work the effect of the ratio of starting reactants on the hydrogen absorption reaction of the system xNaH + MgB2 is investigated. At a constant hydrogen pressure of 50 bar, depending on the amount of NaH present in the system NaH + MgB2, different hydrogen absorption behaviors are observed. For two system compositions: NaH + MgB2 and 0.5NaH + MgB2, the formation of NaBH4 and MgH2 as only crystalline hydrogenation products is achieved. The relation between the ratio of the starting reactants and the obtained hydrogenation products is discussed in detail.  相似文献   

20.
LaY2Ni10.5?xMnx (x = 0.0, 0.5, 1.0, 2.0) alloys are prepared by a vacuum induction-quenching process followed by annealing. The structure, as well as the hydriding/dehydriding and charging/discharging characteristics, of the alloys are investigated via X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS), pressure-composition isotherms (PCI), and electrochemical measurement. The alloys have multiphase structures mainly composed of Gd2Co7-type (3R) and Ce2Ni7-type (2H) phases. Partial substitution of Ni by Mn clearly increases the hydrogen storage capacity of the alloys. The x = 0.5 alloy exhibits a maximum hydrogen storage capacity of 1.40 wt % and a discharge capacity of 392.9 mAh g?1, which are approximately 1.5 and 1.9 times greater than those of the x = 0.0 alloy, respectively. The high-rate dischargeability (HRD) of the x = 0.5 alloy is higher than that of the other alloys because of its large hydrogen diffusion coefficient D, which is a controlling factor in the electrochemical kinetic performance of alloy electrodes at high discharge current densities. Although the cyclic stability of the x = 0.5 alloy is not as high as that of the other alloys, its capacity retention ratio is as high as 56.3% after the 400th cycle. The thermodynamic characteristics of the x = 0.5 alloy satisfy the requirements of the hydride electrode of metal hydride–nickel (MH–Ni) batteries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号