首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
针对二类支持向量机分类器在图像密写分析应用中训练步骤复杂与推广性弱的缺点,提出了基于一类支持向量机分类器的真彩隐秘图像盲检测算法,算法选用小波包高阶统计特征,仅对正常图像训练建立分类器。实验表明,算法在检测系统效率和推广性方面有较好的表现。  相似文献   

2.
提出一种基于遗传算法和多超球面一类支持向量机的隐秘图像检测方案。为了得到最能反映分类本质的特征从而有效实现分类识别,采用遗传算法进行图像特征选择,将支持向量机的分类效果作为适应度函数值返回,指导遗传算法搜索最优的特征选择方案。实验结果表明,与仅采用支持向量机分类而未进行特征选择的隐秘检测方案相比,该方案提高了隐秘图像检测的识别率。  相似文献   

3.
提出了一种基于小波统计量和多类支持向量机的彩色图像密写检测算法。为克服以往将彩色图像转化为灰度图像引起的各颜色通道相关性损失的不足,算法建立了彩色图像统计模型。对彩色图像每个颜色通道分别进行小波分解,根据小波分解系数绝对值和绝对值线性预测的对数误差生成特征向量,并采用多类支持向量机进行模式分类。在特定嵌入率下对几种常见的密写软件生成的密写图像进行测试。实验表明此算法具有一定的通用性,对密写图像具有较高的识别率。  相似文献   

4.
针对二类支持向量机分类器在隐秘图像检测中训练步骤复杂与推广性弱的缺点,提出了一种新的基于遗传算法和一类支持向量机的隐秘图像检测方案。采用遗传算法进行图像特征选择,一类支持向量机作为分类器。实验结果表明,与只利用一类支持向量机分类,但未进行特征选择的隐秘检测方法相比,提高了隐秘图像检测的识别率和系统检测效率。  相似文献   

5.
基于核的K-均值聚类   总被引:17,自引:0,他引:17  
孔锐  张国宣  施泽生  郭立 《计算机工程》2004,30(11):12-13,80
将核学习方法的思想应用于K-均值聚类中,提出了一种核K-均值聚类算法,算法的主要思想是:首先将原空间中待聚类的样本经过一个非线性映射,映射到一个高维的核空间中,突出各类样本之间的特征差异,然后在这个核空间中进行K-均值聚类。同时还将一种新的核函数应用于核K-均值聚类中以提高算法的速度。为了验证算法的有效性,分别利用人工和实际数据进行K-均值聚类和核K-均值聚类,实验结果显示对于一些特殊的类分布数据,核K-均值聚类比K-均值聚类具有更好的聚类效果。  相似文献   

6.
从净图角度出发,提出了以BMP、JPEG净图特征为基础,采用FCM聚类的多超球体一类分类的隐藏信息检测技术。该技术针对同一类样本的特征存在着部分差异的特点,先将净图样本进行模糊C均值聚类,再将该样本的各子类样本特征输入一类SVM分类器进行训练,建立净图样本各子类的超球体分类模型,以此解决净图检测正确率低的问题。实验结果表明,该方法具有一定的通用性和泛化能力,减少了虚警率和漏检率。  相似文献   

7.
从净图角度出发,提出了以BMP、JPEG净图特征为基础,采用FCM聚类的多超球体一类分类的隐藏信息检测技术。该技术针对同一类样本的特征存在着部分差异的特点,先将净图样本进行模糊C均值聚类,再将该样本的各子类样本特征输入一类SVM分类器进行训练,建立净图样本各子类的超球体分类模型,以此解决净图检测正确率低的问题。实验结果表明,该方法具有一定的通用性和泛化能力,减少了虚警率和漏检率。  相似文献   

8.
张诚成  胡金春 《软件学报》2007,18(10):2445-2457
从无监督机器学习角度提出了一种基于SVC(support vector clustering)的图像融合规则,解决了基于SVM(support vector machine)的融合规则在处理多聚焦图像融合问题时所引起的区域混叠与非平滑过渡问题,进一步提高了融合图像的质量.使用非降采样离散小波变换对源图像进行多分辨率分解,基于网格提取源图像的特征.图像特征集合作为SVC的输入数据集,聚类结果最终由区域鉴别算法分配到两个区域:互补信息区域和冗余信息区域,并分别采用选择法和加权平均法生成融合图像的多分辨率表示,通过对这一多分辨率表示进行小波逆变换重构融合图像.详细研究了SVC的参数q与融合效果的评价参数RMSE之间的关系.理论分析及实验结果均表明,SVC用于图像融合问题是合适的,而且比较实验显示,基于SVC的融合规则优于基于SVM的融合规则.  相似文献   

9.
联合OC-SVM和MC-SVM的图像来源取证方法   总被引:1,自引:0,他引:1  
为了解决现有图像来源取证方法在相机样本较多时准确性较差、无法对未知模型的图像来源取证以及可扩展性差的问题,提出了一种基于一类和多类支持向量机联合的图像来源取证方法.算法利用协方差的统计相关性提高了CFA插值系数的估计精度,并以SFFS算法选择的特征作为分类器输入.采用OC-SVM(一类支持向量机)和MC-SVM(多类支持向量机)联合的策略进行图像来源分类,有效地解决了对未知模型图像来源的鉴别问题以及可扩展性差的问题.实验表明,该方法对28种相机拍摄的图像进行来源取证,能够达到平均90.4%的鉴别正确率,同时对于3种训练模型以外的未知相机模型拍摄图像,能够达到平均79.3%的检测正确率.  相似文献   

10.
基于SIFT算法的体育类图像分类与应用研究   总被引:1,自引:0,他引:1  
针对基于内容的图像分类检索方法的数据量巨大、计算复杂度高等的不足,提出一种基于SIFT算法的图像分类方法,并将其应用到体育类图像分类上。该方法从图像中提取出特征点之后,分别使用DBScan算法和K-Mean算法对特征数据进行分析,从而得到最能反映图像特征的数据,再利用这些数据对图像进行分类。实验分析表明:该方法具有速度快、分类精度高的优点。  相似文献   

11.
支持向量机是最有效的分类技术之一,具有很高的分类精度和良好的泛化能力,但其应用于大型数据集时的训练过程还是非常复杂。对此提出了一种基于单类支持向量机的分类方法。采用随机选择算法来约简训练集,以达到提高训练速度的目的;同时,通过恢复超球体交集中样本在原始数据中的邻域来保证支持向量机的分类精度。实验证明,该方法能在较大程度上减小计算复杂度,从而提高大型数据集中的训练速度。  相似文献   

12.
霍华  赵刚 《计算机工程》2012,38(13):131-133
针对视觉词袋模型的量化误差与视觉词含糊性,提出一种基于视觉词模糊权重的视频语义标注方案。该方案在训练样本集的预聚类基础上,逐个聚类训练单类支持向量机OC-SVM。根据样本特征与聚类超球球心的距离函数及聚类超球的空间分布确定视觉词映射及权重,以提高视觉词的表达力、区别力。实验结果表明,基于该方案的视频语义标注精度分别比TF方案和VWA方案提高34%和16%。  相似文献   

13.
基于PCA和多约简SVM的多级说话人辨识   总被引:2,自引:1,他引:1  
提出一种基于主成分分析(PCA)和多约简支持向量机(SVM)的多级说话人辨识方法。首先用PCA对注册说话人进行快速粗判决,再用多约简SVM进行最后决策。此多约简SVM有两个约简步骤,即用PCA和样本选择算法分别减少训练数据的维数和个数。理论分析和实验结果表明:该方法可以大大减少系统的存储量和计算量,提高训练和识别时间,并具有较好的鲁棒性。  相似文献   

14.
针对传统的二分类音频隐写分析方法对未知隐写方法的适应性较差的问题,提出了一种基于模糊C均值(FCM)聚类与单类支持向量机(OC-SVM)的音频隐写分析方法。在训练过程中,首先对训练音频进行特征提取,包括短时傅里叶变换(STFT)频谱的统计特征和基于音频质量测度的特征,然后对所提取的特征进行FCM聚类得到C个聚类,最后送入多个超球面的OC-SVM分类器进行训练;检测过程中,对测试音频进行特征提取,根据多个超球面OC-SVM分类器的边界对待测音频进行检测。实验结果表明,该隐写分析方法对于几种典型的音频隐写方法能够较为正确地检测,满容量嵌入时,测试音频的总体检测率达到85.1%,与K-means聚类方法相比,所提方法的检测正确率提高了至少2%。该隐写分析方法比二分类的隐写分析方法更具有通用性,更适用于隐写方法事先未知情况下的隐写音频的检测。  相似文献   

15.
基于无监督聚类的约简支撑向量机   总被引:1,自引:0,他引:1  
为解决标准支撑向量机算法所面临的巨大的计算量问题,Lee和Mangasarian提出了约简支撑向量机算法;但他们选取的“支撑向量”是从训练样本里面任意选的,其分类结果受随机性影响比较大。该文利用简单的无监督聚类算法,在样本空间中选取了一些具有较强代表性的样本作为“支撑向量”,再运用约简支撑向量机算法,有效地减少了运算量。实验验证文中方法可以用较少的“支撑向量”来得到较高的识别率,同时运行时间也大大缩短。  相似文献   

16.
刘谦  卢宏涛 《计算机工程》2009,35(6):142-144
提出一种基于JPEG二进制压缩数据流的隐写分析方法。该方法不同于在基于离散余弦变换频率域以及图像空间域上的隐写分析方法,利用嵌入信息引起二进制压缩流熵的变化,应用多重嵌入方法得到一组特征向量,以此训练一类支持向量机。针对JSteg和Outguess嵌入方法的检测实验达到了较理想的效果。  相似文献   

17.
改进的K均值聚类算法在支持矢量机中的应用   总被引:1,自引:0,他引:1  
将一种改进的K均值聚类算法应用于支持矢量机(SVM)的训练。基于这一改进的聚类算法,设计了SVM的增量式训练步骤,并给出了在训练过程中删除无用样本的的方法。模式分类的实验结果表明,这种改进的K均值聚类算法在SVM中的应用不仅大幅度地缩短了SVM的训练时间,而且进一步提高了它的分类能力。  相似文献   

18.
19.
一种快速最小二乘支持向量机分类算法   总被引:1,自引:1,他引:0  
最小二乘支持向量机不需要求解凸二次规划问题,通过求解一组线性方程而获得最优分类面,但是,最小二乘支持向量机失去了解的稀疏性,当训练样本数量较大时,算法的计算量非常大。提出了一种快速最小二乘支持向量机算法,在保证支持向量机推广能力的同时,算法的速度得到了提高,尤其是当训练样本数量较大时算法的速度优势更明显。新算法通过选择那些支持值较大样本作为训练样本,以减少训练样本数量,提高算法的速度;然后,利用最小二乘支持向量机算法获得近似最优解。实验结果显示,新算法的训练速度确实较快。  相似文献   

20.
支持向量机是一种新的统计学习算法,其学习原则是使结构风险最小,与经典的学习方法的经验风险最小原则不同,这使得支持向量机具有很强的泛化能力。因为支持向量机算法是一个凸二次优化问题,能够保证所求的局部最优解就是全局最优解。目前,研究的绝大多数是两类问题。然而,即使我们能够将两类问题正确分类,也不能意味着实际应用中多类分类问题的解决。在这篇文章中,我们介绍了支持向量机算法,并且通过多类字母图象分类问题说明支持向量机算法在多类分类问题中的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号