首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The present paper deals with an analysis of a forced circulation closed loop solar water heating system; withdrawal of hot water of constant flow rate from a storage tank through a heat exchanger is considered. The effect of flow rate and heat exchanger length on the performance has also been discussed for a typical set of parameters and for a typical cold day in Delhi (26 January 1980).  相似文献   

2.
An experimental investigation is carried out on a forced circulation solar water heater to assess its performance under various operating conditions. The system consisted of two identical collectors of total absorber area of 3.45 m2 and a storage tank of 200 litre capacity. Experiments were carried out during clear days with and without system loading for two water mass flow rates through the collector; namely 0.1305 kg/s and 0.06525 kg/s. The system was operated without thermostat control and with thermostat control at maximum and minimum settings. The collector efficiency improved with system loading. The improvement was better with increased hot water withdrawal from the system.  相似文献   

3.
A performance study of forced circulation solar water heaters using packed-bed solar collectors is presented. Iron chips, gravel and stones have been used as packing materials. Thermal energy stored in the tank, system overall efficiency and pay-back capital for these solar water heaters are compared with those for solar water heaters using a plane collector. It is observed that the performance of the solar water heater is improved appreciably by packing its collector with packing material. A solar water heater using an iron chip, packed-bed collector shows the best performance.  相似文献   

4.
There are various types of solar water heater system available in the commercial market to fulfill different customers’ demand, such as flat plate collector, concentrating collector, evacuated tube collector and integrated collector storage. A cost effective cum easy fabricated V-trough solar water heater system using forced circulation system is proposed. Integrating the solar absorber with the easily fabricated V-trough reflector can improve the performance of solar water heater system. In this paper, optical analysis, experimental study and cost analysis of the stationary V-trough solar water heater system are presented in details. The experimental result has shown very promising results in both optical efficiency of V-trough reflector and the overall thermal performance of the solar water heater.  相似文献   

5.
An experimental study has been carried out to compare the performance of natural and forced circulation domestic solar water heaters. Several measurments have been made for the two cases which included; the collector water inlet and outlet temperatures, the mass flow rate, the tank temperature, the ambient temperature and the solar insolation. The main parameters for the solar collector are calculated for the natural and forced circulation systems. These included; the top, back, and overall loss coefficients, the heat removal factor, the efficiency factor, the useful energy gain and the instantaneous efficiency. The comparison showed that the efficiency of the forced circulation system could be 35 to 80% higher.  相似文献   

6.
The performance of a heat-pipe solar collector was investigated experimentally using refrigerants R11 as the working fluid. The unit is fabricated locally and its performance is evaluated under Beirut Solar conditions. The heat transfer from the heat pipes to the hot-water storage tank took place through a circular end condenser section of the heat-pipe integrated within the collector frame. Tests of single heat pipes showed that the thermal performance of the heat pipe were dependent on its tilt angle, condenser section length and configuration, and type of internal wick used. A circular condenser end of the heat-pipe performed better than a straight condenser due to increased surface area for heat transfer. The R11-charged solar collector with integrated condenser for secondary cooling of water had an efficiency in early operation hours that reached values higher than 60% for the forced circulation mode. The instantaneous system efficiencies varied from 60 to 20%, which are in the range of conventional water solar collectors. System response was fast and sensitive to the incident solar radiation. The thermosyphonic mode of the system operation generated build up of stored energy in the condenser, resulting in oscillating-type flow thus reducing system efficiency below values obtained with forced circulation. © 1998 John Wiley & Sons, Ltd.  相似文献   

7.
This paper presents a mathematical model of a solar water-heating system. The model is duly supported by experiment. The solar water heating system, comprised of 12 collectors and a storage tank for both natural and forced circulation with and without withdrawal of hot water from the storage tank, has been studied. The analysis has also been made for various configurations of the system viz. series, parallel and a combination. It is concluded that, under thermosyphon, true parallel, and in forced circulation, true series combinations perform better.  相似文献   

8.
We present a simplified method which could be used to calculate, to a first approximation, the energy losses from the sides of a solar collector/water heater. The inclusion of energy losses through the side walls of a reasonable thickness reduce the efficiency of the system by about 5%. The integrated side energy losses for the whole day are not equal for the various segments of the wall. Hence, it will be economical to construct wedge shape walls, thickness decreasing downward, instead of usual rectangular walls.  相似文献   

9.
This paper reports the investigation results on application of the solar assisted air source heat pump systems for hot water production in Hong Kong. A mathematical model of the system is developed to predict its operating performance under specified weather conditions. The optimum flow rate from the load water tank to the condenser is proposed considering both the appropriate outlet water temperature and system performance. The effect of various parameters, including circulation flow rate, solar collector area, tilt angle of solar collector array and initial water temperature in the preheating solar tank is investigated, and the results show that the system performance is governed strongly by the change of circulation flow rate, solar collector area and initial water temperature in the preheating solar tank.  相似文献   

10.
This investigation reports a new type of solar water heating system without water pipes on the collector surface or a separate storage tank. The water to be heated continuously flows perpendicularly from an upper transparent cover to a porous absorber and is stored in a small volume beneath this assembly. Three different systems were designed, manufactured and tested but only one proved to be successful; this design indicated higher thermal efficiency compared to conventional collectors at high flow rates whereas at low flow rates the opposite is true.  相似文献   

11.
The research goal was to develop a new solar water heater system (SWHS) that used a solar water pump instead of an electric pump. The pump was powered by the steam produced from a flat plate collector. Therefore, heat could be transferred downward from the collector to a hot water storage tank. The designed system consisted of four panels of flat plate solar collectors, an overhead tank installed at an upper level and a large water storage tank with a heat exchanger at a lower level. Discharge heads of 1, 1.5 and 2 m were tested. The pump could operate at the collector temperature of about 70–90 °C and vapor gage pressure of 7–14 kPa. It was found that water circulation within the SWHS ranged between 12 and 59 l/d depending on the incident solar intensity and system discharge head. The average daily pump efficiency was about 0.0014–0.0019%. Moreover, the SWHS could have a daily thermal efficiency of about 7–13%, whereas a conventional system had 30–60% efficiency. The present system was economically comparable to a conventional one.  相似文献   

12.
The thermal performance of thermosyphon flat-plate solar water heater with a mantle heat exchanger was investigated to show its applicability in China. The effect on the performance of the collector of using a heat exchanger between the collector and the tank was analyzed. A “heat exchanger penalty factor” for the system was determined and energy balance equation in the system was presented. Outdoor tests of thermal performance of the thermosyphon flat-plate solar water heater with a mantle heat exchanger were taken in Kunming, China. Experimental results show that mean daily efficiency of the thermosyphon flat plate solar water heater with a mantle heat exchanger with 10 mm gap can reach up to 50%, which is lower than that of a thermosyphon flat-plate solar water heater without heat exchanger, but higher than that of a all-glass evacuated tubular solar water heater.  相似文献   

13.
Condensers used in tap water heat pumps are either of the integrated passive immersion type or separate units with active water circulation. The use of the active circulation configuration together with a counter-flow condenser and water flow control has a number of advantages compared to passive immersion condensers. In particular, hot water temperatures above the saturation temperature of the condensing refrigerant are possible. The counter-flow arrangement also permits sub-cooling gains in cycle efficiency. These two features offset the pumping power penalty which would not be necessary in a system with a passive immersion condenser.  相似文献   

14.
A theoretical and experimental study was carried out to investigate the effect of adding a passive condenser on the performance of the single slope, basin type solar still. A theoretical model based on Dunkle [1] mass transfer (evaporation) rate was developed. The model assumes that the transfer of water vapour from the still to the condenser is due to one or more of the following mass transfer modes; (i) diffusion, (ii) purging and (iii) natural circulation. The theoretical results indicate that diffusion contribution is relatively small. The contribution through purging represents the fraction [V(cond)/(V(cond) + V(s))] of the still yield, while it represents 75% of the still yield through natural circulation. An experimental study that simulates the purging mass transfer mode was investigated. The experimental results show good agreement with the theoretical predictions and an increase of 45% in solar still efficiency was obtained.  相似文献   

15.
In the present investigation the performance behaviour of thermosyphonic circulation solar water heaters using packed bed collectors has been analysed. Iron chips, gravels and stones have been used as packing materials. Average tank water temperature, collector as well as system efficiency and mony pay-back for these packed bed solar water heaters are compared with those for solar water heater using a plane collector. Experimental results reveal that the performance of solar water heater improves appreciably by packing its collector with packing material. Among the packed-bed solar water heaters tested the iron chips packed-bed solar water heater gives the overall best performance.  相似文献   

16.
The effect of thermal conductivity of the absorber plate of a solar collector on the performance of a thermo-siphon solar water heater is found by using the alternative simulation system. The system is assumed to be supplied of hot water at 50 °C and 80 °C whereas both are used in domestic and industrial purposes, respectively. According to the Rand distribution profile 50, 125 and 250 l of hot water are consumed daily. The condition shows that the annual solar fraction of the planning functions and the collector's configuration factors are strongly dependent on the thermal conductivity for its lower values. The less dependence is observed beyond a thermal conductivity of 50 W/m °C for the solar improper fraction and above 100 W/m °C for the configuration factors. In addition, the number of air ducts and total mass flow rate are taken to show that higher collector efficiency is obtained under the suitable designing and operating parameters. Different heat transfer mechanisms, adding natural convection, vapor boiling, cell nucleus boiling and film wise condensation is observed in the thermo-siphon solar water heater with various solar radiations. From this study, it is found that the solar water heater with a siphon system achieves system characteristic efficiency of 18% higher than that of the conventional system by reducing heat loss for the thermo-siphon solar water heater.  相似文献   

17.
The paper presents the on site experimental evaluation of the performance of a low-temperature solar organic Rankine cycle system (SORC) for reverse osmosis (RO) desalination. This work is a research step forward to the experimental evaluation of the SORC under laboratory conditions, where the system was tested using an electric brake as load and an electric thermal heater as heat supply. The difference is that solar collectors have been applied as heat supply and there has been a realistic investigation of the performance of the system under the conditions implied by solar energy. The thermal energy produced by the solar collectors’ array evaporates the refrigerant HFC-134a in the pre-heater-evaporator surfaces of the Rankine engine. The superheated vapour is then driven to the expander, where the generated mechanical work produced from expansion drives the high-pressure pump of the RO desalination unit. The superheated vapour at the expander’s outlet is directed to the condenser and condensates. Finally, the saturated liquid at the condenser outlet is pressurized by a positive displacement pump and the thermodynamic cycle is repeated. A special energy recovery system of Axial Pistons Pumps (APP) has been integrated into the RO unit to minimise the specific energy consumption. The results prove that the above concept is technically feasible and continuous operation is achieved under the intermittent availability of solar energy. However, considerably low efficiency has been observed, in comparison with the results taken under controlled thermal load. Nevertheless, it becomes apparent that further optimisation work is required to improve the system efficiency. The research work has been done within the framework of COOP-CT-2003-507997 contract, partly financed by EC.  相似文献   

18.
A distributed model of an air-source heat pump (ASHP) system and its experimental setup using an immersed water condenser were presented. Dynamic performance of the ASHP was then evaluated by both simulation and experiment. The results indicated that the system coefficient of performance (COP) decreased as the condenser temperature increased, ranging from 4.41 to 2.32 with the average COP equaling 3.29 during the experiment. Comparisons between simulation results and experimental measurements demonstrated that the model was able to yield satisfactory predictions. Furthermore, temperature profiles of the refrigerant in the evaporator and condenser were also given. This paper provides the theoretical and experimental background for ASHP system optimization and a valuable reference for a solar air-source heat pump water heater when the solar irradiation energy is insufficient on cloudy or rainy days.  相似文献   

19.
This article investigates experimentally the long-term thermal performance of a two-phase thermosyphon solar water heater and compares the results with the conventional systems. Experimental investigations are conducted to obtain the system thermal efficiencies from the hourly, daily and long-term performance tests. Different heat transfer mechanisms, including natural convection, geyser boiling, nucleate boiling and film-wise condensation, are observed in the two-phase thermosyphon solar water heater while solar radiation varies. The thermal performance of the proposed system is compared with that of four conventional solar water heaters. Results show that the proposed system achieves system characteristic efficiency 18% higher than that of the conventional systems by reducing heat loss for the two-phase thermosyphon solar water heater.  相似文献   

20.
The performance of a solar-boosted heat pump water heater (HPWH) operating under full load and part load conditions was determined in an outdoor experimental study. The system utilised flat unglazed aluminium solar evaporator panels to absorb solar and ambient energy. Absorbed energy was transferred to the water tank by means of the heat pump and a wrap around condenser coil on the outside of the tank. The system COP was found to be in the range of 5–7 under clear daytime conditions and 3–5 under clear night-time conditions. Using part load testing of the HPWH system it was found that concentrating the coils in the lower portion of the tank could increase the efficiency of the condenser coil. It was also shown that there exists a generalised linear relationship that can be used to describe the system COP in terms of the temperature difference between the water in the storage tank and the ambient air.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号