首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of legumes as green manuring crops does involve a potential riskof N leaching losses over the winter period. The susceptibility of cropresidue-derived N to losses and the pre-crop value of a green manuring crop canbe manipulated by proper timing of incorporation into soil. In this study,mineralization of C and N was investigated in a range of low temperatures,including thawing and freezing, that are characteristic to autumn green manureincorporation and its decomposition. The pre-crop effect of green manuring wasfurther tested with spring wheat under field conditions. We hypothesized thatdelaying green manure incorporation in the autumn would reduce the risk of Nlosses from the field and maximize the N transfer to a successive spring wheatcrop. To test the hypothesis, N mineralization was followed in alaboratory experiment where red clover (Trifoliumpratense L.) shoots were incubated at 4–8 °Cfor 40–80 days to simulate early autumn, delayed autumn and late autumnincorporation of a green manuring crop, followed by an incubation at–2 °C or at –2 °C to+4 °C for 25 days to simulate winter conditions. In asimultaneous field experiment, we measured the effect ofdelayed autumn incorporation of common vetch (Vicia sativaL.) green fallow on spring wheat performance. In the laboratoryexperiment, significant N mineralization during incubation wasdetected when simulating both early autumn and delayed autumn incorporation. Incontrast, no net N mineralization was detected when simulating lateincorporation. In the field experiment, the N supply fromsoil to spring wheat was higher in the late and delayed incorporationtreatmentsthan in early or spring incorporation of green manure. Late incorporationalso produced most wheat grain. We conclude that different amounts of N becomeavailable to wheat, depending on the time of incorporation of green manureresidues in soil. This difference is due to temperature. Late or delayedincorporation of green manure residues has the potential to reduce thesusceptibility of mineral N to leaching and yields more N available to asubsequent crop.  相似文献   

2.
Ten widely different plant species were compared for their ability to reduce soil mineral nitrogen levels in the autumn and their ability to improve the nitrogen nutrition of the succeeding crop. The species included monocots and dicots, crops that survived the winter (persistent) or were winter killed (non-persistent) as well as legumes and non legumes. Their ability to reduce soil mineral nitrogen content was dependent on both root depth and persistency of the crops in the autumn. For non-persistent catch crops most of the mineralization of plant nitrogen occurred during the winter, and for some of these so early as to allow leaching of some mineralized nitrogen. For persistent crops most of the mineralization occurred shortly after incorporation in the spring. The effect of the catch crops on nitrogen uptake by the succeeding barley crop varied from 13 to 66 kg N ha–1 and the differences between the crops could not be related to any single character, but to a combination of root depth, persistency, plant nitrate accumulation, and depletion of the soil mineral nitrogen pool in spring.  相似文献   

3.
Greenhouse vegetable cultivation has greatly increased productivity but has also led to a rapid accumulation of nitrate in soils and probably in plants. Significant losses of nitrate–nitrogen (NO3-N) could occur after heavy N fertilization under open-field conditions combined with high precipitation in the summer. It is urgently needed to improve N management under the wide spread greenhouse vegetable production system. The objective of this study was to evaluate the effects of a summer catch crop and reduced N application rates on N leaching and vegetable crop yields. During a 2-year period, sweet corn as an N catch crop was planted between vegetable crops in the summer season under 5 N fertilizer treatments (0, 348, 522, 696, and 870 kg ha−1) in greenhouse vegetable production systems in Tai Lake region, southern China. A water collection system was installed at a depth of 0.5 m in the soil to collect leachates during the vegetable growing season. The sweet corn as a catch crop reduced the total N concentration from 94 to 59 mg l−1 in leached water and reduced the average soil nitrate N from 306 to 195 mg kg−1 in the top 0.1-m soil during the fallow period of local farmers’ N application rate (870 kg ha−1). Reducing the amount of N fertilizer and using catch crop during summer fallow season reduced total N leaching loss by 50 and 73%, respectively, without any negative effect on vegetable yields.  相似文献   

4.
The DAISY soil–plant–atmosphere model was used to simulate crop production and soil carbon (C) and nitrogen (N) turnover for three arable crop rotations on a loamy sand in Denmark under varying temperature, rainfall, atmospheric CO2 concentration and N fertilization. The crop rotations varied in proportion of spring sown crops and use of N catch crops (ryegrass). The effects on CO2 emissions were estimated from simulated changes in soil C. The effects on N2O emissions were estimated using the IPCC methodology from simulated amounts of N in crop residues and N leaching. Simulations were carried out using the original and a revised parameterization of the soil C turnover. The use of the revised model parameterization increased the soil C and N turnover in the topsoil under baseline conditions, resulting in an increase in crop N uptake of 11 kg N ha–1 y–1 in a crop rotation with winter cereals and a reduction of 16 kg N ha–1 y–1 in a crop rotation with spring cereals and catch crops. The effect of increased temperature, rainfall and CO2 concentration on N flows was of the same magnitude for both model parameterizations. Higher temperature and rainfall increased N leaching in all crop rotations, whereas effects on N in crop residues depended on use of catch crops. The total greenhouse gas (GHG) emission increased with increasing temperature. The increase in total GHG emission was 66–234 kg CO2-eq ha–1 y–1 for a temperature increase of 4°C. Higher rainfall increased total GHG emissions most in the winter cereal dominated rotation. An increase in rainfall of 20% increased total GHG emissions by 11–53 kg CO2-eq ha–1 y–1, and a 50% increase in atmospheric CO2 concentration decreased emissions by 180–269 kg CO2-eq ha–1 y–1. The total GHG emissions increased considerably with increasing N fertilizer rate for a crop rotation with winter cereals, but remained unchanged for a crop rotation with spring cereals and catch crops. The simulated increase in GHG emissions with global warming can be effectively mitigated by including more spring cereals and catch crops in the rotation.  相似文献   

5.
We investigated the long-term effects (13–48 years) of crop rotations, cover crops and fertilization practices on soil organic carbon fractions. Two long-term experiments conducted on a clay loam soil in southeastern Norway were used. From the crop rotation experiment, two rotations, one with two years grain + four years grass and the second with grain alone (both for 6 years), were selected. Each rotation was divided into moderate fertilizer rate (30–40 kg N ha–1), normal fertilizer rate (80–120 kg N ha–1) and farmyard manure (FYM 60 Mg ha–1 + inorganic N at normal rate). Farmyard manure was applied only once in a 6-year rotation, while NPK was applied to every crop. The cover crop experiment with principal cereal crops consisted of three treatments: no cover, rye grass and clover as cover crops. Each cover crop was fertilized with 0 and 120 kg ha–1 N rates. Soil samples from both experiments were taken from 0–10 cm and 10–25 cm depths in the autumn of 2001. The classical extraction procedure with alkali and acid solution was used to separate humic acid (HA), fulvic acid (FA) and humin fractions, while H2O2 was used to separate black carbon (BC) from the humin fraction. The rotation of grain + grass showed a significantly higher soil organic carbon (SOC) compared with grain alone at both depths. Farmyard manure application resulted in significantly higher SOC than that of mineral fertilizer only. However, cover crops and N rates did not affect SOC significantly. Organic carbon content of FA, HA and humin fractions accounted for about 29%, 25% and 44% of SOC, respectively. The rotation of grain+grass gave a higher C content in HA and humin fractions, and a lower C in the FA fraction as compared with the rotation with grain alone. Farmyard manure increased HA and humin fractions more than did chemical fertilizers. Clover cover crop increased the C proportion of humin more than rye grass and no cover crop. No significant differences in C contents of FA, HA and humin fractions were observed between N rates. Effects of cover crop and N rates as well as fertilization with NPK on black carbon (BC) content were significant only at 10–25 cm depths. Farmyard manure increased the BC fraction compared with chemical fertilizers. Clover crop also enhanced the accumulation of the BC fraction. Application of 120 kg N ha–1 resulted in a significant increase of the BC fraction.  相似文献   

6.
Winter oilseed rape (OSR) demands high levels of N fertilizer, often exceeding 200 kg N ha−1. Large amounts of residual soil mineral nitrogen (SMN) after harvest are regularly observed, and therefore N leaching during the percolation period over winter is increased. In this study agronomic strategies (fertilization level, crop rotation, tillage intensity) to control nitrate leaching after OSR were investigated by combining field measurements (soil mineral nitrogen, soil water content, crop N uptake) of a 2-year trial and another 5-year field trial with simulation modeling. The crop-soil model uses a daily time step and was built from existing and partly refined submodels for soil water dynamics, mineralization processes, and N uptake. It was used to reproduce the complex processes of the N dynamics and to calculate N concentration in the leachate and total volume of percolation water. Some parameters values were thereby newly identified based on the agreement between measured data and model results. Although SMN in the 60–90 cm layer was overestimated, the model could reproduce the measured data with an acceptable degree of accuracy. Overfertilization of OSR increased N leaching and therefore the precise calculation of N fertilizer doses is a first step towards prevent N leaching. Compared to ploughing, minimum tillage decreased N leaching when winter wheat was grown as the subsequent crop. Volunteer OSR and Phacelia tanacetifolia were grown as catch crops after OSR harvest. N leaching could be decreased especially when Phacelia was grown, but nitrate concentrations in the drainage water were higher and exceeded the European Union (EU) threshold for drinking water when volunteer OSR was grown. The results of this study provide strong evidence that reduced tillage or growing of noncruciferous catch crops decrease N leaching and may be used as an agricultural measure to prevent N pollution.  相似文献   

7.
After 3 years of different crop rotations in an organic farming experiment on a sandy soil in northwest Germany, spring triticale was cultivated on all plots in the fourth year to investigate residual effects on yield, nitrogen (N) leaching and nutrient status in the soil. Previous crop rotations differed in the way N was supplied, either by farmyard manure (FYM, 100 and 200 kg N ha−1 year−1) or by arable legumes like grass-red clover and field beans, or as a control with no N. Other crops in the rotations were maize, winter triticale and spring barley. Additional plots had a 3-year grass-clover ley, that was ploughed-in for spring triticale in the fourth year. Yields of spring triticale were moderate and largest for ploughed-in grassland leys and grass-red clover and plots that had previously received farmyard manure. The former crop rotation, including grassland break-up, had a significant effect on most yield and environmental parameters like residual soil mineral nitrogen (SMN) and N leaching and on the level of available K in the soil. The single crop harvested in the year before spring triticale had a significant effect on yield parameters of spring triticale, less so on SMN and N leaching in the fourth year and no effect on available nutrients (P, K, Mg) and pH in the soil. We conclude that the effects of arable legumes were rather short lived while ploughing of 3-year grassland leys had a profound influence on mineralization processes and subsequently on yield and N losses.  相似文献   

8.
Nitrogen nutrient management is crucially important in shallow-rooted vegetable production systems characterized by high input and high environmental risk. To investigate the effects of summer catch crop (sweet corn, common bean, garland chrysanthemum and edible amaranth), residue management, and soil temperature and water on the succeeding cucumber rhizosphere nitrogen mineralization in intensive production systems, we determined the rates of net nitrogen mineralization and nitrification in a 4-year field experiment on greenhouse cucumber double-cropping systems. Summer catch crop and its residue significantly increased the succeeding cucumber rhizosphere mineral nitrogen contents, when compared to conventional practices. In general, summer catch crop and its residue significantly increased the rates of both net nitrogen mineralization and net nitrogen nitrification at 4 or 40°C, and increased the rates of net nitrogen immobilization (negative mineralization) and net nitrogen nitrification at 15 or 28°C, in succeeding cucumber rhizosphere after four-year treatment. Soil temperature and water had more influence than catch crops and residue management on N mineralization. The effect of carbon on nitrogen mineralization was more pronounced than that of nitrogen, and the effect of microbial carbon on the different forms of inorganic N was more pronounced than that of organic carbon. When the effects of soil temperature and water content were eliminated, cumulative net nitrogen mineralization and nitrification in catch crop and residue management plots were 296–784 and 57–84% higher, respectively, than conventional practices plots. Catch crops and residue management influenced change of ammonium-N more significantly than that of nitrate-N. Additionally, there were complex relationships between fruit yield and soil N mineralization in catch crop- and residue management-induced systems.  相似文献   

9.
The soil water and N dynamics have been studied during two long fallow periods (between wheat or oilseed rape and a spring crop) in a field experiment in Châlons-en-Champagne (eastern France, 48°50 N, 2°15 E). The experiment involved frequent measurements of soil water, soil mineral N, dry matter and N uptake by cover crops. Water and N budgets were established using Ritchie's model for calculating evapotranspiration in cropped soils and a model (LIXIM) for calculating water drainage, N leaching and N mineralisation in bare soils. During the first autumn and winter, a radish cover crop (grown from September 1994 to January 1995) was compared to a bare soil. During the second period (July 1995 to April 1996), a comparison was carried out between (i) oilseed rape volunteers, (ii) bare soil with two types of oilseed rape residues incorporated into the soil (R0 and R270 residues) and (iii) bare soil without residues incorporation. R0 and R270 residues came from two preceding oilseed rape crops which received two rates of N fertilizer (0 and 270 kg N ha-1).Soil mineral N content was markedly reduced by the presence of radish cover crop or oilseed rape volunteers during autumn. The calculated actual evapotranspiration (AET) did not differ much between treatments, meaning that the transpiration by the cover crop or volunteers was relatively low (100–150 L kg-1 of dry matter). Consequently, nitrate leaching was reduced during the rest of the winter and spring as well as nitrate concentration in the percolating water: 45 vs. 91 mg NO3 - L-1 for radish cover crop and bare soil, respectively. The incorporation of oilseed rape residues to soil also exerted a beneficial but smaller action on reducing the nitrate content in the soil. This effect was due to extra N immobilisation which reached a maximum of about 20 kg N ha-1 in mid-autumn for both types of residues. Nine months after the incorporation of the oilseed rape residues, and comparing to the control soil without residues incorporation, N rich residues induced a significant positive N net effect (+ 9 kg N ha-1) corresponding to 10% of N added whereas for N poor residues no net effect was still obtained at the end of experiment (–3 kg N ha-1, not significantly different from 0).To reduce nitrate leaching during long fallow periods, it is necessary to promote techniques leading to decrease mineral-N contents in the soil during autumn before the drainage period, such as (i) residue incorporation after harvest (without fertiliser-N) and (ii) allowing volunteers to grow or sowing a cover crop just after the harvest of the last main crop.  相似文献   

10.
The effect of reducing N rate fertilization and manure addition on greenhouse vegetable yields and soil N leaching was studied in a greenhouse tomato?Ccucumber rotation system in the Yellow River Irrigation Region of Ningxia Plain, North China. The treatments were: 1-no fertilizers, 2-conventional fertilization, 3-reduced fertilizer application, and 4-reduced fertilizer application + regulation of soil C/N ratio applied by the high C/N ratio of dairy manure. The results indicated that reduced fertilizer application in tomato and cucumber season had no significant influence on vegetable yield comparing with control. The amounts of leachate had no significant differences under all fertilizer treatments at the same investigated period. In comparison with conventional fertilization, both total N and NO3?CN leaching decreased in the low fertilizer treatments. The cumulative total N and NO3?CN leached from fertilizers N were less than 9?% during the tomato?Ccucumber rotation system. NO3?CN was the predominant form of leaching N, represented about 70?% of total N in the leachate. Soluble organic N represented 14.7?C33.3?% of total N leached. Vegetable yields did not increase significantly as applied N rates increased. However, soil N leaching increased largely with N rates. Reducing fertilizer N rate while adding dairy manure regulated soil C/N ratio could be appropriate fertilization practices for reducing soil N leaching and achieving high vegetable yields in the greenhouse systems.  相似文献   

11.
Nitrogen use and losses in agriculture in subtropical Australia   总被引:3,自引:0,他引:3  
This review examines the use of nitrogen (N) fertilizer on sugar-cane, summer and winter grain crops, cotton, tropical fruit crops and pastoral areas in the four subtropical zones in eastern Australia. The pathways for N loss from the various crops grown in these zones are also examined and estimates of N loss given.Sugar-cane is the most important crop grown in the subtropical humid northern and southern zones, using 77% of all N fertilizer applied in 1988–89. Urea is the most widely used form of N fertilizer with about 50% of the applied N often lost via ammonia volatilization, denitrification and leaching. Losses of N via ammonia volatilization can be reduced by either irrigating after application, applying urea in subsurface bands or delaying application until after canopy development. Denitrification losses of 20% of applied N have been measured on clay soils in sugar- cane areas while leaching losses may occur by movement of solutes down preferential pathways (e.g. soil fauna, root channels and structural weaknesses in the soil profile). Tropical fruit crops also make a significant contribution to the economy of the humid northern and southern zones. The livestock industry is well established in the subtropical northern zones, with beef and dairy production relying on leguminous as well as N fertilized pastures. Urea is again the most widely used form of N and is susceptible to large losses via ammonia volatilization. Over a 12 month period, losses of between 9% and 42% of the N applied were recorded from a subtropical pasture.Wheat is the major winter crop of the sub-humid northern and southern zones with grain sorghum the main summer crop. Urea is the principal form of N fertilizer applied to both crops and is essential for increasing or maintaining economic yields from both regions. This decrease in soil fertility in grain producing areas is due mainly to a decrease in the amount of soil organic matter available for mineralization. Cotton is another major crop of both areas and relies heavily on N fertilizer application. Nitrogen fertilizer losses have been recorded from all cropping areas, although nitrification inhibitors such as wax coated calcium carbide and 2-ethynylpyridine have reduced denitrification losses from soils growing wheat and cotton respectively.Subtropical agriculture relies heavily on N fertilizer, principally urea, to maintain and increase crop yields. Losses of N from soils sown to crops and from native and sown pasture occur although management practices are being developed to help minimize this loss.  相似文献   

12.
Nitrate leaching as affected by cropping system/crop rotation, history of farmyard manure application or fertilizer nitrogen application (0 N, 0.5 N and 1 N) was studied at nine sites on loamy soils during 1986/87, 1987/88 and 1988/89. Soil solution from 80 to 90 cm soil depth was sampled every second week in the period November to May by the use of porous ceramic cups and analysed for NO3-N and Cl. Climatical conditions were obtained from standard meteorological observations in the region. Drainage from soil profiles was calculated from measured and simulated values of precipitation and actual evapotranspiration, respectively.The results show that type of crop is of the utmost importance for the leaching magnitude of nitrate as 40% of the total variance in nitrate concentrations in the soil solution could be explained by the type of crop.The second factor of importance was the history of farmyard manure (FYM) application, which was able to explain 28% of the total variation in nitrate concentration in the soil solution. Nitrate concentration/leaching from arable land without FYM ever being applied was considerably lower than from arable land which received periodical FYM applications until the early 70's or from arable land which besides periodical FYM applications in the past presently still receives regular applications of FYM. Only about 1% of the total variation in nitrate concentration in the soil solution was explainable by the level of fertilizer nitrogen application.Differences between years explained 14% of the total variation in nitrate concentration in the soil solution due to differences between the years in soil temperatures and water run-off. The run-off during the autumn and winter of 1986/87, 1987/88 and 1988/89 was 95, 275 and 55 mm, respectively. As expected nitrate leaching increased with increasing run off. However, nitrate leaching at the 275 mm run off was considerably lower than expected, which seems explainable by a substantial denitrification. The soil at the sites in question seems thus partly to purify the soil solution for nitrate before it leaves the root zone at the observed high run off conditions.  相似文献   

13.
The effects of faba bean, lupin, pea and oat crops, with and without an undersown grass-clover mixture as a nitrogen (N) catch crop, on subsequent spring wheat followed by winter triticale crops were determined by aboveground dry matter (DM) harvests, nitrate (NO3) leaching measurements and soil N balances. A 2½-year lysimeter experiment was carried out on a temperate sandy loam soil. Crops were not fertilized in the experimental period and the natural 15N abundance technique was used to determine grain legume N2 fixation. Faba bean total aboveground DM production was significantly higher (1,300 g m?2) compared to lupin (950 g m?2), pea (850 g m?2) and oat (1,100 g m?2) independent of the catch crop strategy. Faba bean derived more than 90% of its N from N2 fixation, which was unusually high as compared to lupin (70–75%) and pea (50–60%). No effect of preceding crop was observed on the subsequent spring wheat or winter triticale DM production. Nitrate leaching following grain legumes was significantly reduced with catch crops compared to without catch crops during autumn and winter before sowing subsequent spring wheat. Soil N balances were calculated from monitored N leaching from the lysimeters, and measured N-accumulation from the leguminous species, as N-fixation minus N removed in grains including total N accumulation belowground according to Mayer et al. (2003a). Negative soil N balances for pea, lupin and oat indicated soil N depletion, but a positive faba bean soil N balance (11 g N m?2) after harvest indicated that more soil mineral N may have been available for subsequent cereals. However, the plant available N may have been taken up by the grass dominated grass-clover catch crop which together with microbial N immobilization and N losses could leave limited amounts of available N for uptake by the subsequent two cereal crops.  相似文献   

14.
Trends in nitrogen (N) and phosphate (P) balance for several crops were calculated for the nation and by prefecture for 5-year periods from 1985 to 2005. Prefectural chemical N and P fertilizer applications for paddy rice and upland crops declined but applications for vegetable crops increased during the period like as national trends. Prefectural chemical N and P applications for tea, orchard and forage remained unchanged in line with national trends. Manure N and P applications for each crop did not follow the trends for chemical fertilizer. Although chemical fertilizer application declined, N and P crop withdrawal for paddy rice, upland crops and tea increased as a result of optimizing fertilizer timing and placement. Nitrogen and P balance for each crop indicated a surplus; P surplus was larger than N surplus, because of higher P input and lower crop P withdrawal. Chemical N fertilizer determined N surplus except for forage, which was determined by manure application. Therefore N surplus on paddy rice, upland crops, orchard and tea declined and increased on vegetables. Forage recorded an N deficiency in two 5-year periods nationally because of low manure input. Because P balance was also determined by chemical P fertilizer, the P surplus for paddy rice and upland crops declined and the P surplus for vegetables increased during the period. Total P surplus was reduced on paddy rice and upland crops. Trends for chemical fertilizer, manure and N and P balance varied widely among prefectures, especially for P. Crop withdrawal of N and P varied relatively little. Although prefectural trends did not always follow the national trend, we could conclude that the negative environmental effects of Japanese crop production have diminished recently, and an improvement in N and P balance in vegetable production can be expected.  相似文献   

15.
Field trials were carried out between 2002 and 2005 to investigate the effects of biogas digestion in a mixed organic dairy farming system with arable land and grassland on nutrient cycling, nitrogen (N) uptake and crop yields within a cropping system comprising a whole crop rotation. Five treatments were carried out: (i) solid farmyard manure, (ii) undigested liquid slurry, (iii) digested liquid slurry, (iv) digestion of liquid slurry and field residues such as crop residues and cover crops, and (v) similar to iv, but with additional N inputs at the equivalent of 40 kg N ha−1 farmland through digestion of purchased substrates. The term “manure” is used in the present study to mean all kind of aboveground organic residues left on the field (“immobile manures”, such as crop residues and green manures incorporated directly into the soil) or added as stable wastes or effluents of biogas digestion (“mobile manures”). The total aboveground biomass growth and the overall aboveground N uptake of non-legume maincrops were higher in the liquid slurry manure treatment than in the solid farmyard manure system (+5% and +9%, respectively). The digestion of the liquid slurry increased N uptake and crop yields only after soil incorporation of the slurry shortly after field spreading. The additional collection and digestion of field residues such as cover crops and crop residues, combined with a reallocation of the effluents, strongly increased the amounts of “mobile” manure, allowing a more focussed allocation of the available N. This led to an increase in the aboveground N uptake (+12%) and biomass yield (+4%) of the five non-legume crops, due to a better adapted allocation of nutrients in space and time. Results obtained with spring wheat showed that removal of cover crops in autumn, and their digestion, combined with subsequent use as manure in spring resulted in a better synchronisation of the crop N demand and the soil N availability, in comparison with a strategy where the biomass was left on the field as green (immobile) manure. The inclusion of external substrates led to a further increase of 8% in N uptake, but not to a significant increase in aboveground dry matter yields.  相似文献   

16.
This paper describes the dynamics of soil N mineralization in the experimental intensive dairy farming system ‘De Marke’ on a dry sandy soil in the Netherlands. We hypothesized that knowledge of the effects of crop rotation on soil N mineralization and of the spatial and temporal variability of soil N mineralization in a farming system can be used to better synchronize N application with crop N requirements, and hence to increase the recovery of applied N and to reduce N losses. Soil N mineralization was recorded continuously in the soil layer 0–0.30 m, from 1992 to 2005, using a sequential in situ coring technique on six observation plots, of which two were located in permanent grassland and four in crop rotations with a 3 year grassland phase and an arable phase of 3 or 5 years, dominated by maize. Average annual soil N mineralization was highest under permanent grassland: 381 kg ha?1 and lowest under ≥3rd years arable crops: 184 kg ha?1. In temporary grassland, soil N mineralization increased in the order: 1st year, 2nd year, 3rd year grassland and in arable crops after grassland mineralization decreased in the order: 1st year, 2nd year, ≥3rd years. Total mineral N input, i.e. the sum of N mineralization and mineral N supply to soil, exceeded crop N requirements in 1st year maize and was lower than the requirements in 1st year temporary grassland. N mineralization in winter, outside the growing season, was 77 kg ha?1 in maize and 60 kg ha?1 in grassland. This points at the importance of a suitable catch crop to reduce the susceptibility to N leaching. Temporal and spatial variability of soil N mineralization was high and could not be related to known field conditions. This limits the extent to which N fertilization can be adjusted to soil N mineralization. Variability increased with the magnitude of soil N mineralization. Hence, situations with high soil N mineralization may be associated with high risks for N losses and to reduce these risks a strong build-up of soil organic N should be avoided. This might be achieved, for instance, by fermenting slurry before application on farmland to enhance the fraction mineral N in slurry at the expense of organic N.  相似文献   

17.
The expansion of intensive livestock operations in western Canada has increased concerns about overloading of nutrients in manured lands. The magnitude of nutrient accumulation and its distribution in the soil profile varies with soil-climatic conditions. The objective of this study was to determine loading and distribution of manure-derived nitrogen (N) in the soil profile as influenced by repeated manure applications. Four field experiments were conducted at three sites (Dixon, Melfort and Plenty) in Saskatchewan under longer-term manure management. The four field experiments provide contrasts in soil type, climatic conditions, manure type, application and cropping history to enable the effect of these factors to be evaluated. Liquid hog manure (LHM—Experiment 1) and solid cattle manure (SCM—Experiment 2) treatments were applied annually over 8 years at Dixon (Black Chernozemic loam soil—Udic Boroll in sub-humid climate), while only LHM was applied at Plenty (Dark Brown Chernozemic heavy clay soil—Typic Boroll in semi-arid climate) over 6 years (Experiment 3), and at Melfort (Dark Gray Luvisol silty clay loam soil—Mollic Cryoboralf in humid climate) over 5 years (Experiment 4). Soil samples were collected in the spring and autumn of 2003 and 2004, and were analyzed for organic N, ammonium-N (NH4+-N) and nitrate-N (NO3-N) concentrations. Plant samples were collected to determine the impact of manure application rate on plant N uptake and crop N removal. The annual application of LHM (37,000 L ha−1 yr−1) and SCM (7.6 Mg ha−1 yr−1) at agronomic rates at Dixon (added N balances crop demand for that year), or larger rates of LHM (111,000 L ha−1) applied once every 3 years (Melfort) did not significantly elevate NO3-N in soil compared to the unfertilized control. Lower crop removal and reduced leaching of NO3-N due to drier conditions as occurred at the Plenty site contributed to greater accumulation of nitrate in the top 60 cm at equivalent rates compared to the other two sites. At large manure rates, excess N from the balance estimates could not be accounted for in soil organic N and was assumed to be lost from the soil-plant system. At the Dixon LHM site, deep leaching of NO3-N was observed at the excessive rate (148,000 L ha−1 yr−1) up to the 150 cm depth, compared to the control. At Dixon, the large annual application rate of SCM (30.4 Mg ha−1 yr−1) did not significantly increase NO3-N in the 0–60 cm soil compared to the control, which was attributed to lower mineralization of organic N from the SCM. Over the short and medium term, LHM application at large rates every year poses a greater risk for loading and deep migration of NO3-N in soil than large rates of SCM. Larger single applications made once every 3 years were not associated with accumulation or deep leaching. To prevent loading, rates of applied manure nitrogen should be reduced when crop N removal potential is diminished by high frequency of drought.  相似文献   

18.
Nitrate leaching is often low from grasslands, primarily due to their long period of N uptake compared to arable crops. In the present paper we explore the combined effects of N input regime, soil type and climatic conditions through a combination of field lysimeter studies and simulation modeling of temporary grassland. A lysimeter consisting of eight 10 × 4 × 1 m individually drained cells was constructed in SW Norway, a region with a cool and wet marine climate. Six cells were filled with silty sand and two cells with coarse sand. The lysimeters were cropped first with barley for two years, followed by five years of grassland. Treatments included various combinations of N input (fertilizer, manure or both), and the results were analyzed by means of two coupled dynamic simulation models (CoupModel: a heat- and water transport model, and SOILNNO: a soil nitrogen model). The parameterized models were further used to assess a scenario with a more continental climate (somewhat cooler and drier). All treatments resulted in a net export of N, with N amounts removed at harvest ranging between 121 and 139% of that applied. Measured N yield from the treatment receiving manure only was almost as high as that from the treatment receiving fertilizer only, even though it received on average about 80 kg ha–1 less inorganic N. Nitrogen losses through leaching were in the range of 5–23% of the N input, and soil type had a greater effect than source of N input. The inorganic N fraction of the leachate was 71–82% of the total N, and 98% of this was nitrate. The models gave reasonable simulation of N yields as well as of the timing and magnitude of nitrate leaching from the different treatments. They also clearly illustrated that the low nitrate leaching from the system is primarily attributable to a high plant N uptake. The scenario using weather data from a cooler and drier region showed a large decline in plant uptake of N outside the main cropping season, but simulated nitrate leaching was nevertheless significantly lower. With this scenario, precipitation was only 50% of that at the actual experimental site, and the lower temperatures during autumn and winter reduced net mineralization of soil organic N significantly. Thus, the reduction in precipitation and net mineralization of soil organic N apparently more than outweighed the effects of shorter growing season in the continental climate scenario.  相似文献   

19.
Nutrient balances, defined as the difference between input with manures, fertilizers and atmospheric deposition and offtake of nutrients with harvested products in arable cropping systems, need to be positive to compensate for unavoidable losses to the environment, but should be kept at the lowest possible level to minimize emissions or unnecessary accumulation of nutrients in the soil. Data from five consecutive years are reported from a long-term nutrient monitoring experiment with three replicates, managed comparably to conventional farming practice. There were four nutrient treatments (T1–T4). Treatment T1 received chemical fertilizer only. T2 received processed organic manure, supplying 50 per cent of the crop N-requirement, supplemented by chemical fertilizers. In treatments T1 and T2 the soil was bare during winter. In T3 and T4 the crops were fertilized as in T1 and T2, respectively, but nitrogen catch crops were grown in autumn and winter. Averaged over five years, the N-balances were 46 kg N ha-1 y-1 in T1 and T2 and 25 kg ha-1 y-1 in T3 and T4 (atmospheric deposition of 44 kg N ha-1y-1 included). Averaged over all treatments and years, the P-balance was 7 kg ha-1 y-1 and the K-balance -33 kg ha-1 y-1. The initially high soil fertility indices for both P and K declined over the experimental period. Catch crops and organic manure did not affect crop yields or nutrient balances, except that their combination in T4 resulted in 1.5 ton ha-1 extra dry matter yield of sugar beet roots. Between spring and harvest, potato and sugar beet showed positive N balances and the cereals negative N-balances. Sugar beet was the only crop with a positive K-balance. NPK concentrations in plant products were not systematically affected by treatments but varied considerably between seasons. At harvest, on average 63, 71, 75 and 112 kg N ha-1 (0–90 cm) were found after sugar beet, spring wheat, oats and potato, respectively. In November catch crops accumulated on average 39 kg N ha-1 after cereals and 33 and 5 kg ha-1 after potato and sugar beet, respectively. In March catch crops after the cereals contained 4 kg N ha-1 less than in autumn, but after potato and sugar beet N-accumulation in spring had increased to 49 and 29 ha N ha-1, respectively. In spring soil mineral N (0–90 cm) varied across years from 31 to 63 kg ha-1. The results indicate that compliance with a maximum excess of input over offtake, as imposed by future legislation, is feasible for N for cropping systems comparable to the system examined, but that the standard for P will probably turn out to be a tight one.  相似文献   

20.
The recovery of 15N-labelled fertilizer applied to a winter wheat (120 kg N ha–1) and also a perennial ryegrass (60 kg N ha–1) crop grown for seed for 1 year in the Canterbury region of New Zealand in the 1993/94 season was studied in the field. After harvests, ryegrass and wheat residues were subjected to four different residue management practices (i.e. ploughed, rotary hoed, mulched and burned) and three subsequent wheat crops were grown, the first succeeding wheat crop sown in 1994/95 to examine the effects of different crop residue management practices on the residual 15N recovery by succeeding wheat crops. Total 15N recoveries by the winter wheat and ryegrass (seed, roots and tops) were 52% and 41%, respectively. Corresponding losses of 15N from the crop-soil systems represented by un-recovered 15N in crop and soil were 12% and 35%, respectively. These losses were attributed to leaching and denitrification. The proportions of 15N retained in the soil (0-400 mm depth) at the time of harvest of winter wheat and ryegrass were 36% and 24%, respectively. Although the soil functioned as a substantial sink for fertilizer N, the recovery of this residual fertilizer by subsequent three winter wheat crops was low (1-5%) and this was not affected by different crop residue management practices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号